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Covariant Approximate Averaging (CAA)
E. Shintani et. al. arXiv:1402.0244

I Goal:How to reduce the statistical error of lattice correlation functions
for a given number of gauge configurations at a low computational
cost?

I Approach:
1 Use symmetrires of the correlation functions to increase statistics.
2 use a technique called “All Mode Averaging” or AMA to reduce the

computational cost.

I Hence the name Covariant Approximate Averaging or CAA.

I The method is widely applicable and is tested for quantities of
interest such as pion, nucleon and vector meson masses on 2+1
Domain-Wall configurations and is shown to reduce the cost.

A. Abdel-Rehim (CyI) AMA with Approx. Eigenvectors QCDNA 2014 2 / 29



Covariant Approximation Averaging (CAA)

I Let O[U] be some correlator (hadron propagator).

I Let G be a group of symmetry transformations of the action where:
g : x → xg

g : U(x)→ Ug (x) = U(xg )
g : O[U](x , y)→ Og [U](x , y) = O[U](xg , yg ).

I Because G is a symmetry: 〈Og [U]〉 = 〈O[Ug ]〉

I Since Ug has the same probability weight as U:

〈Og [U]〉 = 〈O[U]〉 (1)
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I If Og [U] = O[Ug ] on each configuration then:∑
g∈G
Og [U] =

∑
g∈G
O[Ug ] (2)

I Define:

OG [U] ≡ 1

NG

∑
g∈G
Og [U] =

1

NG

∑
g∈G
O[Ug ] (3)

I We have:
〈OG [U]〉 = 〈O[U]〉 (4)

I However, statistical error of OG decreases by a factor 1/
√
NG .

I Direct evaluation of 〈OG [U]〉 requires NG times extra computational
cost.
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Reducing the cost of Covariant Averaging

I Replace Og [U] by and approximation O(appx)g [U] such that
covariance still holds.

I Similarly, replace OG [U] by O
(appx)
G [U].

I Define an improved estimator for O by

O(imp) = O −O(appx) +O(appx)
G

≡ O(rest) +O(appx)
G , (5)

O(rest) = O −O(appx), (6)

I Again we can see: 〈O(imp)〉 = 〈O〉.
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Error in 〈O(imp)〉

I The standard deviation of the improved estimator is:

σ(imp) ' σ
[
2∆r +

1

NG
− 2

NG
∆r + Rcorr

]1/2
, (7)

Rcorr =
1

N2
G

∑
g 6=g ′

r corrgg ′ , (8)

I σX =
√
〈(∆OX )2〉, and ∆OX = OX − 〈OX 〉,

I rg = 〈∆O∆O(appx) g 〉
σσ

(appx)
g

I r corrgg ′ = 〈∆O(appx) g∆O(appx) g′ 〉
σ(appx) gσ(appx) g′

I r = rg=I , and ∆r = 1− r .
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Error in 〈O(imp)〉

I The standard deviation of the improved estimator is:

σ(imp) ' σ
[
2∆r +

1

NG
− 2

NG
∆r + Rcorr

]1/2
, (9)

Rcorr =
1

N2
G

∑
g 6=g ′

r corrgg ′ , (10)

I To get a reduction in the error we need:
I r ' 1: O and O(appx) positively correlated.
I r corrgg ′ small and positive: very little correlation between O(appx)g and

O(appx)g ′

I Extreme cases:
I r = 1, r corrgg ′ = 0, then σ(imp) = σ√

NG
.

I r = 0, r corrgg ′ = 1, then σ(imp) ' σ
√

2.
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Conditions of CAA to work

I CAA-1: O(appx) is covariant under G .

I CAA-2: O(appx) is strongly correlated with O, i.e. ∆r � 1.

I CAA-3: The computational cost of O(appx) is much smaller than O.

I CAA-4: The transformation g ∈ G is chosen to give small (compared
to 1/NG ) positive correlations among {O(appx) g}g∈G , i.e.
Rcorr � 1/NG .

I The question now is: How to construct O(appx)?.

I Two approaches:
I Low Mode Averaging (LMA).
I All Mode Averaging (AMA).
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Low Mode Averaging

I O(appx) = O(LMA),
The inverse of the Dirac operator S [U] ≈ S (low).

O(LMA) = O[S (low)],

O(LMA)
G =

1

NG

∑
g∈G
O[S (low) g],

S (low)(x , y) =

Nλ∑
k=1

λ−1
k ψk(x)ψ†k(y),

I λk and ψk are eigenvalues and eigenvectors of the Hermetian Dirac
operator H(x , y).
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All Mode Averaging (AMA)

I

O(AMA) = O[S (all)],

O(AMA)
G =

1

NG

∑
g∈G
O[S (all) g],

S (all)b =

Nλ∑
k=1

λ−1
k (ψ†kb)ψk + fε(H)b,

fε(H)b =

NCG∑
i=1

(H)ici , (11)

I fεb is a polynomial of H with vector “coefficients” ci .

I In practice this combination is obtained from the CG, depending on
the source vector b and initial guess x0.

I The subscript ε indicates the norm of the residual vector after NCG

iterations, or steps, of the CG.

A. Abdel-Rehim (CyI) AMA with Approx. Eigenvectors QCDNA 2014 10 / 29



How does it work?

I Compute some low modes Nλ exactly!

I Project these out from the source, as you do in deflation:

bproj ≡
(

1−
∑Nλ

k=1 ψkψ
†
k

)
b.

I Solve the projected system with CG to get a solution xCG .

I xCG +
∑Nλ

k=1 λ
−1
k (ψ†kb)ψk = S (all)b.

I High modes are included approximately in xCG .

I Two possible stopping criteria for CG :
I The norm of the residual is smaller than ε.
I Do a fixed number of iterations.

I In the first approach, it might happen that the covaraince condition

which leads to 〈O(AMA)〉 = 〈O(AMA)
G 〉 will be violated by round off

errors. Although highly unlikely as the authors mention.
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Nucleon Electromagnetic Form Factors (3pt functions)

Nf = 2 + 1 DWF configurations from RBC/UKQCD on 243x64 lattice.
Quark mass parameter m = 0.005, 0.01 corresponding to mπ = 330, 420 MeV.
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Figure: Time-slice dependence of axial-charge GA in m = 0.005 (top) and
m = 0.01 (bottom) with standard method (left), LMA (middle) and AMA (right).
The cross symbols and star symbols denote 2∆r and Rcorr for three-point
function. The colored band is the constant fitting result in this range.

A. Abdel-Rehim (CyI) AMA with Approx. Eigenvectors QCDNA 2014 12 / 29



CAA and AMA with inexact eigenvectors

I Two main questions:
I Does using approximate eigenvectors introduce bias?
I Whether we combine computation of the eigenvectors with

computation of the correlation function?

I Approaches envisioned:
I Incremental EigCG.
I Inexact deflation as used in DD by Luscher.
I AMG or DD-αAMG.
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The issue of bias

I In the case of exact deflation, we assume that there is no bias
because the eigenvectors are exact.

I In a sense, exact here will mean that the accuracy of the eigenvectors
is higher than the required accuracy of the linear system.

I Also, the eigenvectors were computed in a separate calculation that is
independent of the sources that is used in the improved estimator.

I DD or Multigrid:
I Approximate eigenvectors obtained from a set of random fields.
I This setup phase is separate from the solution phase.
I This probably ensures no bias in the solution.

I Incremental EigCG:
I Usually approximate eigenvectors are computed simultaneously while

solving the linear systems.
I This combination speeds up the whole calculation.
I However, approximate eigenvectors will depend on the sources which

could lead to a bias.
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Combining Deflation and CAA with Incremental EigCG

I Two approaches:
1 Take a set of random fields φl and solve them with eigCG to obtain a

set of approximate eigenvectors.
2 Combine eigenvector computation with linear system solution and take

the point of view that the final solution is what matters (a solution is a
solution regardless of how you got it).

I Here we test the second option first as it is most cost effective.
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Wilson Twisted-Mass Action at Maximal Twist

doublet of light quarks: ψ =

(
u
d

)
cut-off effects are automatically O(a) improved

BiCGStab doesn’t work for Twisted-Mass.

Implemented EigCG in tmLQCD software.
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EigCG for Twisted-Mass

2-flavor TM configuration, 243 × 48, mπ = 300 MeV,
m = 60, k = 10, nev = 100.
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2+1+1 TM configuration, 483 × 96, mπ = 230 MeV,
m = 60, k = 10, nev = 300.
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2-flavor, TM+clover, 483 × 96, mπ = 140 MeV,
m = 240, k = 5, nev = 150
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Results

I D15.48 ensemble: 2+1+1, β = 2.1, 483 × 96, mπ ≈ 200 MeV, 232
configurations.

I Twelve inversions for the source at twelve source positions were
carried out requiring the residual to be |r2| < 10−18 - high precision
(hp) inversions.

I For the same 12 source positions the residual was required at
|r2| < 10−4 - low precision (lp) inversions.

I An additional 72, the residual was required at |r2| < 10−4 - low
precision (lp) inversions.

I Although the spatial components of the source position were chosen
to be random, the time component of the source position is not
entirely random.
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I The CAA method prescribes the improved observable:

O imp =
1

Nhp

Nhp−1∑
i=0

O
(hp)
i︸ ︷︷ ︸

H0

− 1

Nhp

Nhp−1∑
i=0

O
(lp)
i︸ ︷︷ ︸

L0

+
1

Nlp

Nhp+Nlp−1∑
i=Nhp

O
(lp)
i︸ ︷︷ ︸

L1

.

I There are Nhp + Nlp = 12 + 72 source positions, of which the first
Nhp have been inverted to high precision and low precision, while the
remaining Nlp have been inverted only to low precision.

I If there is a bias due to the approximation made to obtain the low
precision inversions, but translational invariance holds, then 〈L1〉 =
〈L0〉, such that 〈O imp〉 = 〈H0〉, i.e. the approximation cancels in the
mean value.

I As regards the error, if the correlators in the H0 sum are highly
correlated with those of L0 then the error should scale as 1√

Nlp
.

I In fact, to first approximation the error should scale as√
2(1− r) + 1

Nlp
, where r ∈ [0, 1] is the normalized correlation

between H0 and L0.
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Results for the ρ
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Results for the π
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Conclusions & Outlook

CAA+AMA methods are efficient for reducing errors in hadronic
observables.

EigCG is an efficient solver for Twisted-Mass fermions.

Tested combining deflation and CAA+AMA and found that there
were no bias introduced by the use of approximate eigenvectors.

Outlook: more testing is planned to see for example how the results
will be affected if one solves for the eigenvectors first using randm
sources.
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