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What is a GPU?

* Kepler K20X (2012)
— 2688 processing cores
— 3995 SP Gflops peak
» Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
* As we move away from registers
— Bandwidth decreases

— Latency increases
e Programmed using a thread model

— Architecture abstraction is known as CUDA
— Fine-grained parallelism required
* Diversity of programming languages
— CUDA C/C++/Fortran
— OpenACC, OpenMP 4.0
— Python, etc.

Host Memory

PCle I 8.0 GB/s per direction
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Enter QUDA
e “QCD on CUDA” - http://lattice.github.com/quda

e Effort started at Boston University in 2008, now in wide use as
the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.

e Provides:

— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

* Maximize performance / Minimize time to science

— Exploit physical symmetries to minimize memory traffic

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Domain-decomposed (Schwarz) preconditioners for strong scaling

— FEigenvector solvers (Lanczos and EigCG)

— Multigrid solvers for optimal convergence



http://lattice.github.com/quda

QUDA is community driven

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

= Rich Brower (Boston University)

= Michael Cheng (Boston University)

= MAC (NVIDIA)

= Justin Foley

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jlab)

= Hyung-Jin Kim (BNL)

= Jian Liang (IHEP)
= (Claudio Rebbi (Boston University) -

= Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (Cyprus Institute -> FNAL) r ’

= Alejandro Vaquero (Cyprus Institute)
= Frank Winter (UoE -> Jlab)

* Yibo Yang (IHEP) /—_/_/Z

QMP QLA QMT

Message Passing Linear Algebra Threading
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The Dirac Operator

» Quark interactions are described by the Dirac operator
- First-order PDE acting with a background field
- Large sparse matrix
SU(3) QCD gauge field

Dirac spin projector (link matrices) A is the clover matrix
matrices

(4x4 spin space) (3x3 color space) (12x12 spin®color space)

4
M:U,:C’ — Z(P_'u X Uéb 5:U—I—/l,a:’ + P—l_'u X Uaﬁiﬂ 5:13—,&,:{;’) + (4 + m + Ax)5:v,a;’
u=1

m quark mass parameter

= 2Da:,:c’ + (4 +m+ Ap)dy

- 4-d nearest neighbor stencil operator acting on a vector field
» Eigen spectrum is complex (typically real positive)



Mapping the Dirac operator to CUDA

e Finite difference operator in LQCD is known as Dslash

e Assign a single space-time point to each thread
— V = XYZT threads, e.g., V = 244 => 3.3x10° threads

e Looping over direction each thread must
— Load the neighboring spinor (24 numbers x8)
— Load the color matrix connecting the sites (18 numbers x8)
— Do the computation
— Save the result (24 numbers)

e Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

e QUDA reduces memory traffic Tesla K20X
— Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
— Similarity transforms to increase operator sparsity

— Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
e Almost a free lunch (small increase in iteration count)




Kepler Wilson-Dslash Performance
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Linear Solvers

= Nature of eigen-spectrum constrains which solver choice [FER TSRy
- CGNE / CGNR Bk = (rK,rk)/(rk-1,rk-1)
- BiCGstab Pi+1 = ri - PrPk
- GMRES qk+1 = A pPr+i
= Condition number inversely proportional to mass -
Fk+1 = Ik - O(k+1

- Light (realistic) masses are highly singular Xkt = Xi+ O
= Entire solver algorithm must run on GPUs K = ke

— Time-critical kernel is the stencil application (SpMV)
— Also. require I?fLAS level-1 type operations | | conjugate

= BLAS is becoming the Amdahl’s law of naive linear solvers gradient
— Global sums are expensive

— BLAS are bandwidth bound
— Can rectify through e.g., s-step methods and/or preconditioners

o = (ri,rk)/(Pr+1, qk+1)




Kepler Wilson-Solver Performance
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Chroma Benchmark with QUDA

Chroma

243x128 lattice
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge
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Mixed-precision solvers

» QUDA has had mixed-precision from the get go
» Almost a free lunch where it works well (wilson/clover)
- Residual injection / reliable updates mixed-precision BiCGstab
- 2 Tflops sustained in workstation (4 GPUs)
= Did not work well for CG (staggered / twisted mass / dwf)
- double-single has increased iteration count
- double-half non convergent
= Why is this?
- CG recurrence relations much more intolerant
- BiCGstab noisy as hell anyway
» Need to make CG more robust
- Make double-half work
- Less polishing in mixed-precision multi-shift solver




(Stable) Mixed-precision CG

= CG convergence relies on gradient vector being orthogonal to

residual
- Re-project when injecting new residual

= 0. chosen to minimize |e|a
- True irrespective of precision of p, q, r
- Solution correction is truncated if we keep low precision x

- Always keep solution vector in high precision ,
while (|ri|> ¢) {

« B computation relies on (ri,ij) = [rif? 3 R
- Not true in finite precision Pk-1 = Ik - PPk
- Polak-Ribiere formula is equivalent and self-stabilizing ki1 = A pre
through local orthogonality o = (rk,rk)/(Px+1, qk+1)

rk+1 = Ik - OlQk+1

Pk = a(o(qk,qx) - (Px,qk))/(Xk-1,1k-1) o X0+ Qb
» Further improvement possible k=k+1
— Mining the literature on fault-tolerant solvers...




Comparison of staggered double-halt solvers
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Comparison of staggered double-half solvers
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Multi-GPU Implementation

= Scalable multi-GPU solver
required

— cuda streams to overlap
comms and compute

— Packing kernels for
contiguous data for MPI

— Utilize GPU Direct for
low-latency inter-GPU
communication




Relative Scaling

Strong Scaling Chroma with DD
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Communication-Reducing Algorithms

* Reduce inter-node communication and synchronization
— Inter-node communication comes from face exchange
— Synchronization comes from global sums
» Utilize domain-decomposition techniques, e.g., Additive Schwarz

N\

: solve domain-restricted

8 e s | D+ PP )/ 3 ; ; /
sites 1in {2 1 t ¢ 1] > ' _ : ____\eq]_la,t.lon n €2 95

K n " R RN =
b

sites 1n (2o
sites 1n ()3

sites 1n (24

figure taken from Osaki and Ishikawa



Communication-Reducing Algorithms

* Non-overlapping blocks - simply switch off inter-node comms

* Preconditioner is a gross approximation

— Use an iterative solver to solve each domain
system

— Only block-local sums required

— Require only ~10 iterations of domain solver
= 16-bit precision

— Need to use a flexible solver = GCR

* Block-diagonal preconditioner

impose A cutoff

— Limits scalability of algorithm

— In practice, non-preconditioned part
becomes source of Amdahl




Strong Scaling Chroma with DD
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Extreme Scaling

Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)
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Deflation Algorithms in QUDA

» EigCG implemented in QUDA (Alexei Strelchenko)

, //accum. Ritz vectors
for s = 1,...,51 X //for 51 RHS
xo = UH U b, //Galerkin proj.

x;, V,H| = eigCG(nev,m, A, xy,b;) //eigCG part

V = orthogonalize V against U //(not strictly needed)
‘U, H| =RayleighRitz[U, V]
end for




Deflation Algorithms in QUDA

s Use MAGMA h’brary for 1 Accuracy of final Ritz vectors, L=24,T=48
required LAPACK functionality 2| @recs gauge

= Memory not a problem
» EigCG only works on subsets
= Cache full set on CPU

» Extensible eigenvector solver
framework for future solvers

= EigBiCG
= GMRES-DR
= etc.
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Deflation Algorithms in QUDA

1Ogonvergence of 48 successive linear systems, L=24,T=48 1O(;onvergence of 48 successive linear systems, L=24,T=48

Tesla K40m ] Tesla K40m
@ rec 8 gauge @ rec 8 gauge

O
>
9
m
()
a'd

Residual

1000 1500 2000

1000 1500 2000
lters

lters

degenerate twisted mass 243x48, K=0.161231, p = 0.0085




Mixed-Precision Deflation Algorithms

» Mixed-precision CG
» Precision-truncated residual is ignorant of low modes
= This can causes breakdown in CG recurrence relations
» Ameliorated by using reliable updates (and other methods)

» EigCG phase seems to need double precision

» Loss of precision in finding Ritz vectors results in very poor
eigenvector set

» Deflated CG is hugely stabilized once low modes projected out
= double-half solvers now completely stable at light quark mass
» e.g. degenerate twisted mass 243x48, k = 0.161231, p = 0.0040

Non-deflated double-single CG: 15 sec
Non-deflated double-half CG: (does not converge)
INitCG double-single initCG: 2.42 sec

INitCG double-half initCG: 1.84 sec

(combination of algorithm and precision)




Mixed Precision Deflation Algorithms
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Adaptive Geometric Multigrid

323x256 anisotropic clover on 1024 BG/P cores

mixed precision BICGStab =g
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Adaptive Geometric Multigrid

» Adaptively find candidate null-space vectors

— Dynamically learn the null space and use this to
define the prolongator

— Algorithm is self learning

* Setup

Set solver to be simple smoother

<DApply current solver to random vector vi = P(D) n;

<DIf convergence good enough, solver setup complete
«<@DConstruct prolongator using fixed coarsening (1 - PR) vk =0
= Typically use 4* geometric blocks

= Preserve chirality when coarsening R = ys PT y5 = PT
H<@MConstruct coarse operator (Dc = R D P)

X<@Recurse on coarse problem

= @Set solver to be augmented V-cycle, goto 2

T e T




Adaptive Geometric Multigrid




Adaptive Geometric Multigrid
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Motivation

Wallclock time for Light Quark solves in Single
Precision

= A CPU running the optimal
algorithm surpasses a highly
tuned GPU sub-optimal
algorithm

» For competitiveness, MG on
GPU 1s a must

» Seek multiplicative gain of
architecture and algorithm
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Chroma propagator benchmark
Figure by Balint Joo

MG Chroma integration by Saul Cohen
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The Challenge of Multigrid on GPU

* GPU requirements very different from CPU
— Each thread is slow, but O(10,000) threads per GPU

* Fine grids run very efficiently
— High parallel throughput problem

» Coarse grids are worst possible scenario

— More cores than degrees of freedom

— Increasingly serial and latency bound

— Little’s law (bytes = bandwidth * latency)
— Amdahl’s law limiter

* Multigrid decomposes problem into
throughput and latency parts




Hierarchical algorithms on
heterogeneous architectures

GPU

Thousands of cores
for parallel processing

CPU

Few Cores optimized
for serial work




Ingredients for Parallel Adaptive Multigrid

= Prolongation construction (setup)
- Block orthogonalization of null space vectors
- Sort null-space vectors into block order (locality)
- Batched QR decomposition

= Smoothing (relaxation on a given grid)
- Repurpose the domain-decomposition preconditioner

= Prolongation
- interpolation from coarse grid to fine grid
- one-to-many mapping

= Restriction
- restriction from fine grid to coarse grid
- many-to-one mapping

» Coarse Operator construction (setup)
- Evaluate R 4 P locally
- Batched (small) dense matrix multiplication

» Coarse grid solver
- direct solve on coarse grid
- (near) serial algorithm




Design Goals

e Performance

— LQCD typically reaches high % peak peak performance
— Brute force can beat the best algorithm

» Flexibility
— Deploy level i on either CPU or GPU

— All algorithmic flow decisions made at runtime
— Autotune for a given heterogeneous architecture

* (Short term) Provide optimal solvers to legacy apps
— e.g., Chroma, CPS, MILC, etc.

* (Long term) Hierarchical algorithm toolbox
— Little to no barrier to trying new algorithms




Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

/N

ColorSpinorField GaugeField

/N /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField




Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

olorSpinorFielc augeFielc

/N /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField




Multigrid and QUDA

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

/N

ColorSpinorField GaugeField

Alrcnitecture




Multigrid and QUDA

» Algorithms are straightforward to write down
= QUDA Multigrid V-cycle source:

void MG: :operator() (ColorSpinorField &x, ColorSpinorField &b) {

1f (param.level < param.Nlevel) {

(*presmoother) (x, b); // do the pre smoothing
transfer->R(*r coarse, *r); // restrict to the coarse grid
(*coarse) (*x _coarse, *r coarse); // recurse to the next lower level
transfer->P(*r, *x coarse); // prolongate back to this grid
(*postsmoother) (x,b); // do the post smoothing

} else {

(*coarsesolver) (x, b); // do the coarse grid solve




Parallel Implementation

= Coarse operator looks like a Dirac operator
- Link matrices have dimension Ny X Ny (e.g., 20 x 20)

aw il
ISCJS ‘e — T Z { isc,js’c’ l_l_,uaj + }/ISC.]S r'e! 51 ,uaji| T (M o Xi§é,j§/é/) 5i§é7j§/é/

= Fine vs. Coarse grid parallelization
- Coarse grid points have limited thread-level parallelism
- Highly desirable to parallelize over fine grid points where possible

= Parallelization of internal degrees of freedom?
- Color / Spin degrees of freedom are tightly coupled (dense matrix)
- Each thread loops over color / spin dimensions
- Rely on instruction-level parallelism for latency hiding

» Parallel multigrid uses common parallel primitives
- Reduce, sort, etc.
- Use CUB parallel primitives for high performance




Writing the same code for two architectures

» Use C++ templates to abstract arch specifics
— Load/store order, caching modifiers, precision, intrinsics

 CPU and GPU almost identical

— CPU and GPU kernels call the same functions
— Index computation (for loop -> thread id)
— Block reductions (shared memory reduction and / or atomic operations)




Writing the same code for two architectures

template<..>  host device  Real bar(Arg &arg, int x) {
// do platform independent stuff here
complex<Real> a[arg.length];
arg.A.load(a);

field order, cache modifiers, textures 99% of computation goes here

arg.A.save(a)

platform specific load/store here: < .. // do computation platform independent stuff goes here
return norm(a);
}

template<..> void fooCPU(Arg &arg) { template<.> global void fooGPU(Arg arg) {
arg.sum = 0.0; int tid = threadIdx.x + blockIdx.x*blockDim.x;
#pragma omp for real sum = bar<..>(arg, tid);
for (int x=0; x<size; x++) platform specific parallelization __shared  typename BlockReduce: :TempStorage tmp;
arg.sum += bar<.>(arg, X); GPU: shared memory arg.sum = cub::BlockReduce<..>(tmp).Sum(sum);
} CPU: OpenMP, vectorization }

- CPU GPU




The compilation problem...

 Tightly-coupled variables should be at the register level

* Dynamic indexing cannot be resolved in register variables

— Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

template <typename ProlongateArg>
__global  void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {
for (int c=0; c<Ncolor; c++) {

}
}
}



The compilation problem...

* All internal parameters must be known at compile time
— Template over every possible combination O(10,000) combinations
— Tensor product between different parameters
— 0(10,000 combinations) per kernel
— Only compile necessary kernel at runtime

template <typename Arg, int Ncolor, int Nspin>
__global void prolongate(Arg arg) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {

for (int c=0; c<Ncolor; c++) {

}
}

= }

» JIT compilation will fix this



Current Status

» Framework is working but still slow

- GCR + MR preconditioner F]ne gr]d on GPU
— GCR + MG preconditioner Coarse gr]d on CPU




Heterogeneous Updating Scheme

* Multiplicative MG is necessarily  |sassssss ssssssss
serial process
— Cannot utilize both GPU and
CPU simultanesouly
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Heterogeneous Updating Scheme

* Multiplicative MG is necessarily  |sassssss ssssssss

5 serial process Sl S

— Cannot utilize both GPU and SEsEnEsH SEmneEED

CPU simultanesouly 00800001 £330000)

o O O O _ ; ;

» Additive MG is parallel SEEREREN EEmREREE

— Can utilize both GPU and CPU
simultanesouly

¢ 9 » Additive MG requires accurate
O—0—0 —»O—0—0 coarse-grid solution

— Not amenable to multi-level

O O O ‘ O O
— Only need additive correction
/ at CPU<->GPU level interface
* Accurate coarse-grid solution
O

maybe cheaper than
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Strong GPU Roadmap

Pascal

Unified Memory
3D Memory
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1 = Maxwell
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Dynamic Parallelism
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Introducing NVLINK and Stacked Memory

NVLINK

* GPU high speed interconnect
» 80-200 GB/s

# Planned support for POWER CPUs

Stacked Memory

® 4x Higher Bandwidth (-1 TB/s)
* 3x Larger Capacity
® 4x More Energy Efficient per bit




NVLink Enables Data Transfer At
Speed of CPU Memory

380 GB/s

HBM DDR4
1 Terabyte/s 50 75 GB/s




The Future of GPUs

= GPUs viable because of multi SB gaming market
= Coming to an end anytime soon?













The Future of GPUs

= Each photo-realistic image takes ~2 seconds
» Photo-realistic imagery requires ~200x faster
» Add physics

» Rigid body mechanics

» Computational fluid dynamics (smoke, water, wind)

= Hair

n efC.

=« GPUs aren’t slowing down anytime soon
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Exploiting Locality

Wilson SP Dslash Performance with GPU generation
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Future Directions - Locality

* Where locality does not exist, let’s create it
— E.g., Multi-source solvers
— Staggered Dslash performance, K20X

— Transform a memory-bound
into a cache-bound problem

— Entire solver will remain
bandwidth bound




Future Directions - Communication

* Only scratched the surface of domain-decomposition algorithms
— Disjoint additive
— Overlapping additive
— Alternating boundary conditions
— Random boundary conditions
— Multiplicative Schwarz
— Precision truncation




Future Directions - Latency

 Global sums are bad

— Global synchronizations
— Performance fluctuations

* New algorithms are required

— S-step CG / BiCGstab, etc.
— E.g., Pipeline CG vs. Naive

* One-sided communication
— MPI-3 expands one-sided communications
— Cray Gemini has hardware support
— Asynchronous algorithms?
 Random Schwarz has exponential convergence




Hierarchical Algorithm Toolbox

* Real goal is to produce scalable and optimal solvers

» Exploit closer coupling of precision and algorithm

— QUDA designed for complete run-time specification of
precision at any point in the algorithm

— Currently supports 64-bit, 32-bit, 16-bit
— Is 128-bit or 8-bit useful at all for hierarchical algorithms?
* Domain-decomposition (DD) and multigrid

— DD solvers are effective for high-frequency dampening
— Overlapping domains likely more important at coarser scales?



Summary

* Introduction to QUDA library
* Production library for GPU-accelerated LQCD
— Scalable linear solvers
— Coverage for most LQCD algorithms
» Efforts now focussed on strong scaling optimal algorithms
* Domain decomposition
» Eigenvector solvers
» Adaptive multigrid
* Mixed precision
» Hierarchical and heterogeneous algorithm research toolbox
— Aim for scalability and optimality
» Lessons today are relevant for Exascale preparation
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