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What is a GPU?
• Kepler K20X (2012) 

– 2688 processing cores 
– 3995 SP Gflops peak 

• Effective SIMD width of 32 threads (warp) 
• Deep memory hierarchy 
• As we move away from registers 

– Bandwidth decreases 
– Latency increases 

• Programmed using a thread model 
– Architecture abstraction is known as CUDA 
– Fine-grained parallelism required 

• Diversity of programming languages  
– CUDA C/C++/Fortran 
– OpenACC, OpenMP 4.0 
– Python, etc.
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Enter QUDA
• “QCD on CUDA” – http://lattice.github.com/quda 
• Effort started at Boston University in 2008, now in wide use as 

the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc. 
• Provides: 

— Various solvers for all major fermonic discretizations, with multi-GPU support 
— Additional performance-critical routines needed for gauge-field generation 

• Maximize performance / Minimize time to science 
– Exploit physical symmetries to minimize memory traffic 
– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector solvers (Lanczos and EigCG)     new! 
– Multigrid solvers for optimal convergence   new!

http://lattice.github.com/quda
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QUDA is community driven
§ Ron Babich (NVIDIA) 
§ Kip Barros (LANL) 
§ Rich Brower (Boston University) 
§ Michael Cheng (Boston University) 
§ MAC (NVIDIA) 
§ Justin Foley  
§ Joel Giedt (Rensselaer Polytechnic Institute) 
§ Steve Gottlieb (Indiana University) 
§ Bálint Joó (Jlab) 
§ Hyung-Jin Kim (BNL) 
§ Jian Liang (IHEP) 
§ Claudio Rebbi (Boston University) 
§ Guochun Shi (NCSA -> Google) 
§ Alexei Strelchenko (Cyprus Institute -> FNAL) 
§ Alejandro Vaquero (Cyprus Institute) 
§ Frank Winter (UoE -> Jlab) 
§ Yibo Yang (IHEP)
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The Dirac Operator
▪ Quark interactions are described by the Dirac operator 
– First-order PDE acting with a background field 
– Large sparse matrix 
!

!

!

!

!

!

– 4-d nearest neighbor stencil operator acting on a vector field 
▪ Eigen spectrum is complex (typically real positive)
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Mapping the Dirac operator to CUDA
• Finite difference operator in LQCD is known as Dslash 
• Assign a single space-time point to each thread 

– V = XYZT threads, e.g., V = 244 => 3.3x106 threads 

• Looping over direction each thread must 
– Load the neighboring spinor (24 numbers x8) 

– Load the color matrix connecting the sites (18 numbers x8) 

– Do the computation 

– Save the result (24 numbers)  

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity 
• QUDA reduces memory traffic 

– Exact SU(3) matrix compression (18 => 12 or 8 real numbers) 
– Similarity transforms to increase operator sparsity 
– Use 16-bit fixed-point representation 
• No loss in precision with mixed-precision solver 
• Almost a free lunch (small increase in iteration count)

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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Kepler Wilson-Dslash Performance
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Linear Solvers
▪ Nature of eigen-spectrum constrains which solver choice 
– CGNE / CGNR 
– BiCGstab 
– GMRES 

▪ Condition number inversely proportional to mass 
– Light (realistic) masses are highly singular 
▪ Entire solver algorithm must run on GPUs 

– Time-critical kernel is the stencil application (SpMV) 
– Also require BLAS level-1 type operations 

▪ BLAS is becoming the Amdahl’s law of naive linear solvers 
– Global sums are expensive 
– BLAS are bandwidth bound 
– Can rectify through e.g., s-step methods and/or preconditioners 

while (|rk|> ε) { 
•βk = (rk,rk)/(rk-1,rk-1) 
•pk+1 = rk - βkpk 

     qk+1 = A pk+1 
•α = (rk,rk)/(pk+1, qk+1) 
•rk+1 = rk - αqk+1 
•xk+1 = xk + αpk+1 

•k = k+1 
}

conjugate  
gradient
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Kepler Wilson-Solver Performance
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Chroma Benchmark with QUDA

Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 

Chroma 
243x128 lattice 
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge 
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Mixed-precision solvers
▪ QUDA has had mixed-precision from the get go 
▪ Almost a free lunch where it works well (wilson/clover) 
– Residual injection / reliable updates mixed-precision BiCGstab 
– 2 Tflops sustained in workstation (4 GPUs) 
▪ Did not work well for CG (staggered / twisted mass / dwf) 
– double-single has increased iteration count 
– double-half non convergent 
▪Why is this? 
– CG recurrence relations much more intolerant 
– BiCGstab noisy as hell anyway 
▪ Need to make CG more robust 
– Make double-half work 
– Less polishing in mixed-precision multi-shift solver



Q
C

D
N

A
 2

01
4

(Stable) Mixed-precision CG
▪ CG convergence relies on gradient vector being orthogonal to 

residual  
– Re-project when injecting new residual 
▪ α chosen to minimize |e|A 
– True irrespective of precision of p, q, r   
– Solution correction is truncated if we keep low precision x  
– Always keep solution vector in high precision 
▪ β computation relies on (ri,rj) = |ri|2 δij 
– Not true in finite precision 
– Polak-Ribière formula is equivalent and self-stabilizing  

through local orthogonality 
!

!

▪ Further improvement possible  
– Mining the literature on fault-tolerant solvers…

while (|rk|> ε) { 
•βk = (rk,rk)/(rk-1,rk-1) 
•pk+1 = rk - βkpk 

     qk+1 = A pk+1 
•α = (rk,rk)/(pk+1, qk+1) 
•rk+1 = rk - αqk+1 
•xk+1 = xk + αpk+1 

•k = k+1 
}

βk = α(α(qk,qk) - (pk,qk))/(rk-1,rk-1)



Q
C

D
N

A
 2

01
4

0 1000 2000 3000 4000 5000
1e-08

1e-06

0.0001

0.01

1 double-half (naive)
double-half (new)
double

Comparison of staggered double-half solvers
V=164 m=0.01



Q
C

D
N

A
 2

01
4

0 20000 40000 60000 80000 1e+05
1e-08

0.0001

1

10000 double-half (naive)
double-half (new)
double

Comparison of staggered double-half solvers
V=164 m=0.001



Q
C

D
N

A
 2

01
4

Multi-GPU Implementation
Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

▪ Scalable multi-GPU solver 
required 

– cuda streams to overlap  
comms and compute 

– Packing kernels for  
contiguous data for MPI 

– Utilize GPU Direct for  
low-latency inter-GPU  
communication
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Strong Scaling Chroma with DD

Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 

Chroma 
483x512 lattice 
Relative Scaling (Application Time)  
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Communication-Reducing Algorithms
• Reduce inter-node communication and synchronization 

– Inter-node communication comes from face exchange 
– Synchronization comes from global sums 

• Utilize domain-decomposition techniques, e.g., Additive SchwarzDomain Decomposition method on GPU cluster Yusuke Osaki

Figure 1: Lattice domain-decomposition and relation to the RAS iteration.

ditioner and study the bottleneck by investigating the timing chart of the algorithm. The results are
shown in section 5 and we give a brief summary for the results in the last section.

2. The Restricted Additive Schwarz domain-decomposition iteration

The restricted additive Schwarz iteration [6] is a kind of the fixed iteration solver for elliptic
differential equations. This solver makes use of the geometrical structure of a latticized partial
difference equation. In lattice QCD the discretized space-time can be split into several domains and
we show the schematic picture of the decomposition in Fig.1. Ωi represents the lattice sites in the
i-th domain without overlapping. Ω′

i denotes the domain extended from Ωi. The extended domains
are overlapped in general and the data in overlapped region are replicated on the neighbouring
domains.

To solve Eq. (1.1) without domain overlapping, we expect that the solution φ can be approxi-
mated by combining the partial solution of ξΩi derived fromDΩiξΩi =ηΩi from each domain, where
DΩi is the restriction of D to Ωi with the Dirichlet boundary condition. The additive Schwarz (AS)
iteration simply approximates it as φ ∼ ∑i ξΩi , and the approximation is refined by the Richardson
iteration. A problem arises when we overlap the decomposition since the approximate solution
derived from the extended equation DΩ′

i
ξΩ′

i
= ηΩ′

i
becomes inconsistent in the overlapped region.

The restricted additive Schwarz (RAS) iteration gives a simple solution to this inconsistency. In
Fig.1 we denote the restriction operation as RΩi arrow which simply extracts the data on the bulk
sites (Ωi ∈ Ω′

i) to avoid the inconsistency. Thus the approximation to φ can be constructed as
φ ∼ ∑i RΩiξΩ′

i
. We show the RAS iteration in Alg. 1. The fourth line pickups the data on Ω′

i from
the whole field vector, the fifth line solves the target problem restricted in the overlapped domainΩ′

i
with the Dirichlet boundary condition, and the next line represents the restriction process described
above.

The RAS iteration itself is not sufficient for the complete solver, and is usually used as the
preconditioner for the Krylov subspace iterative solvers. We employ BiCGStab solver for the
Krylov subspace solver. The RAS preconditioner KRAS corresponds to the following operator;

KRAS = S
NRAS−1

∑
j=0

(1−DS) j, with S=
N

∑
i=1

RΩi(D
−1
Ω′
i
)PΩ′

i
. (2.1)

This is applied to the following preconditioned equation;

DKRASχ = η , φ = KRASχ , (2.2)

3

figure taken from Osaki and Ishikawa
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Communication-Reducing Algorithms
• Non-overlapping blocks - simply switch off inter-node comms 
• Preconditioner is a gross approximation 

– Use an iterative solver to solve each domain  
system 

– Only block-local sums required 
– Require only ~10 iterations of domain solver   
⟹ 16-bit precision 

– Need to use a flexible solver ⟹  GCR 
• Block-diagonal preconditioner  

impose λ cutoff 
– Limits scalability of algorithm 
– In practice, non-preconditioned part  

becomes source of Amdahl
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Strong Scaling Chroma with DD

Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 

Chroma 
483x512 lattice 
Relative Scaling (Application Time)  
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Extreme Scaling
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B. Joo,  F. Winter (JLab), M. Clark (NVIDIA)
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Deflation Algorithms in QUDA
▪ EigCG implemented in QUDA (Alexei Strelchenko)

Improving eigenvec. accuracy: the Incremental
EigCG

A. Stathopoulos and K. Orginos, SIAM J.Sci.Comput. 32 (2010) 439-462

1 U = [], H = [] //accum. Ritz vectors
2 for s = 1, ..., s1 : //for s1 RHS
3 x0 = UH�1UHbs //Galerkin proj.
4 [xi, V, H] = eigCG(nev, m, A, x0, bi) //eigCG part
5 V̄ = orthogonalize V against U //(not strictly needed)
6 [U, H] =RayleighRitz[U, V̄]
7 end for

A. Strelchenko Deflated solvers on GPUs JLAB 2014 5/20
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Deflation Algorithms in QUDA
▪ Use MAGMA library for 

required LAPACK functionality 
▪ Memory not a problem 
▪ EigCG only works on subsets 
▪ Cache full set on CPU 
▪ Extensible eigenvector solver 

framework for future solvers 
▪ EigBiCG 
▪ GMRES-DR 
▪ etc.

Eigenvector accuracy
The degenerate twisted mass fermions, k = 0.161231, µ = 0.0085

A. Strelchenko Deflated solvers on GPUs JLAB 2014 19/20
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Deflation Algorithms in QUDA

Incremental EigCG convergence
The degenerate twisted mass fermions, k = 0.161231, µ = 0.0085

InitCG restart at: tol = 5 ⇤ 10�7

A. Strelchenko Deflated solvers on GPUs JLAB 2014 17/20

Incremental EigCG convergence
The degenerate twisted mass fermions, k = 0.161231, µ = 0.0085

A. Strelchenko Deflated solvers on GPUs JLAB 2014 16/20degenerate twisted mass 243χ48, κ = 0.161231, µ = 0.0085
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Mixed-Precision Deflation Algorithms
▪ Mixed-precision CG 
▪ Precision-truncated residual is ignorant of low modes 
▪ This can causes breakdown in CG recurrence relations 
▪ Ameliorated by using reliable updates (and other methods)  
▪ EigCG phase seems to need double precision 
▪ Loss of precision in finding Ritz vectors results in very poor 

eigenvector set 
▪ Deflated CG is hugely stabilized once low modes projected out 
▪ double-half solvers now completely stable at light quark mass 
▪ e.g. degenerate twisted mass 243χ48, κ = 0.161231, µ = 0.0040

Non-deflated double-single CG: 15 sec 
Non-deflated double-half CG: (does not converge) 
InitCG double-single initCG: 2.42 sec  
InitCG double-half initCG: 1.84 sec  
Achieved speedup ~8X for initCG  (combination of algorithm and precision)
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Mixed Precision Deflation Algorithms

degenerate twisted mass 243χ48, κ = 0.161231, µ = 0.0040

double-single double-half
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Adaptive Geometric Multigrid
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Osborn et al 2011
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Adaptive Geometric Multigrid 
• Adaptively find candidate null-space vectors 

– Dynamically learn the null space and use this to  
define the prolongator 

– Algorithm is self learning 
• Setup 
1.Set solver to be simple smoother 
2.Apply current solver to random vector  vi = P(D) ηi 
3.If convergence good enough, solver setup complete 
4.Construct prolongator using fixed coarsening  (1 - P R) vk = 0 
➡ Typically use 44 geometric blocks 
➡ Preserve chirality when coarsening R = γ5 P† γ5 = P† 

5.Construct coarse operator (Dc = R D P) 
6.Recurse on coarse problem 
7.Set solver to be augmented V-cycle, goto 2
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Adaptive Geometric Multigrid 
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Adaptive Geometric Multigrid 
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Motivation
▪ A CPU running the optimal 

algorithm surpasses a highly 
tuned GPU sub-optimal 
algorithm 

▪ For competitiveness, MG on 
GPU is a must 

▪ Seek multiplicative gain of 
architecture and algorithm

0"

10"

20"

30"

40"

50"

60"

70"

QUDA"(32"XK"nodes)" Mul:Grid"(16"XE"nodes)""

Av
er
ag
e'
Ru

n'
Ti
m
e'
fo
r'1

'so
ur
ce
''

(s
ec
on

ds
)'

Wallclock'9me'for'Light'Quark'solves'in'Single'
Precision''

0"

5"

10"

15"

20"

25"

30"

35"

QUDA"(16"XK"Nodes)" Mul:"Grid(16"XE"Nodes)"

Av
er
ag
e'
Ti
m
e'
fo
r'1

'so
ur
ce
'

(s
ec
on

ds
)'

Wallclock'9me'for'Strange'Quark'solves'in'Single'
Precision'

Chroma propagator benchmark  
Figure by Balint Joo 
MG Chroma integration by Saul Cohen 
MG Algorithm by James Osborn 



Q
C

D
N

A
 2

01
4

The Challenge of Multigrid on GPU

• GPU requirements very different from CPU 
– Each thread is slow, but O(10,000) threads per GPU 

• Fine grids run very efficiently 
– High parallel throughput problem 

• Coarse grids are worst possible scenario 
– More cores than degrees of freedom 
– Increasingly serial and latency bound 
– Little’s law (bytes = bandwidth * latency) 
– Amdahl’s law limiter 

• Multigrid decomposes problem into 
throughput and latency parts
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heterogeneous architectures

Thousands of cores  
for parallel processing

Few Cores optimized  
for serial work

CPU 

GPU 



Q
C

D
N

A
 2

01
4

Ingredients for Parallel Adaptive Multigrid
▪ Prolongation construction (setup) 
– Block orthogonalization of null space vectors 
– Sort null-space vectors into block order (locality) 
– Batched QR decomposition 

▪ Smoothing (relaxation on a given grid) 
– Repurpose the domain-decomposition preconditioner  

▪ Prolongation 
– interpolation from coarse grid to fine grid 
– one-to-many mapping 

▪ Restriction 
– restriction from fine grid to coarse grid 
– many-to-one mapping 

▪ Coarse Operator construction (setup) 
– Evaluate R A P locally  
– Batched (small) dense matrix multiplication 

▪ Coarse grid solver 
– direct solve on coarse grid  
– (near) serial algorithm x
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Design Goals
• Performance 

– LQCD typically reaches high % peak peak performance 
– Brute force can beat the best algorithm 

• Flexibility 
– Deploy level i on either CPU or GPU 
– All algorithmic flow decisions made at runtime 
– Autotune for a given heterogeneous architecture 

• (Short term) Provide optimal solvers to legacy apps 
– e.g., Chroma, CPS, MILC, etc. 

• (Long term) Hierarchical algorithm toolbox  
– Little to no barrier to trying new algorithms 
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Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField
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Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Algorithms
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Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Architecture
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Multigrid and QUDA
▪ Algorithms are straightforward to write down 
▪ QUDA Multigrid V-cycle source:

  void MG::operator()(ColorSpinorField &x, ColorSpinorField &b) {!
!
    if (param.level < param.Nlevel) {!
      (*presmoother)(x, b);        // do the pre smoothing!
!
      transfer->R(*r_coarse, *r);        // restrict to the coarse grid!
!
      (*coarse)(*x_coarse, *r_coarse);       // recurse to the next lower level!
!
      transfer->P(*r, *x_coarse);       // prolongate back to this grid!
!
      (*postsmoother)(x,b);        // do the post smoothing!
!
    } else { !
      (*coarsesolver)(x, b);  // do the coarse grid solve!
    }!
!
  }



Q
C

D
N

A
 2

01
4

▪ Coarse operator looks like a Dirac operator 
– Link matrices have dimension Nv x Nv (e.g., 20 x 20) 

!

!

!

▪ Fine vs. Coarse grid parallelization 
– Coarse grid points have limited thread-level parallelism  
– Highly desirable to parallelize over fine grid points where possible 
▪ Parallelization of internal degrees of freedom? 
– Color / Spin degrees of freedom are tightly coupled (dense matrix) 
– Each thread loops over color / spin dimensions 
– Rely on instruction-level parallelism for latency hiding 
▪ Parallel multigrid uses common parallel primitives 
– Reduce, sort, etc. 
– Use CUB parallel primitives for high performance

Parallel Implementation

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8
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Writing the same code for two architectures
• Use C++ templates to abstract arch specifics 

– Load/store order, caching modifiers, precision, intrinsics 
• CPU and GPU almost identical 

– CPU and GPU kernels call the same functions 
– Index computation (for loop -> thread id) 
– Block reductions (shared memory reduction and / or atomic operations)
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Writing the same code for two architectures

template<…> void fooCPU(Arg &arg) {!
  arg.sum = 0.0;!
#pragma omp for!
  for (int x=0; x<size; x++) !
    arg.sum += bar<…>(arg, x);!
}

template<…> __global__ void fooGPU(Arg arg) {!
  int tid = threadIdx.x + blockIdx.x*blockDim.x;!
  real sum = bar<…>(arg, tid);!
  __shared__ typename BlockReduce::TempStorage tmp;!
  arg.sum = cub::BlockReduce<…>(tmp).Sum(sum);!
}

CPU GPU

template<…> __host__ __device__ Real bar(Arg &arg, int x) {!
  // do platform independent stuff here !
  complex<Real> a[arg.length];!
  arg.A.load(a);!
!
  … // do computation!
  !
  arg.A.save(a);!
  return norm(a);!
}

platform specific parallelization  
GPU: shared memory!
CPU: OpenMP, vectorization

platform specific load/store here:!
field order, cache modifiers, textures

platform independent stuff goes here  
99% of computation goes here
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The compilation problem…
• Tightly-coupled variables should be at the register level 
• Dynamic indexing cannot be resolved in register variables 

– Array values with indices not known at compile time spill out into 
global memory (L1 / L2 / DRAM)

 template <typename ProlongateArg>!
  __global__ void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {!
    int x = blockIdx.x*blockDim.x + threadIdx.x;!
    for (int s=0; s<Nspin; s++) {!
      for (int c=0; c<Ncolor; c++) {!
!    …!
      }!
    }!
  }
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The compilation problem…
• All internal parameters must be known at compile time 

– Template over every possible combination O(10,000) combinations 
– Tensor product between different parameters 
– O(10,000 combinations) per kernel 

– Only compile necessary kernel at runtime 

!

!

!

!

!

!

• JIT compilation will fix this

 template <typename Arg, int Ncolor, int Nspin>!
  __global__ void prolongate(Arg arg) {!
    int x = blockIdx.x*blockDim.x + threadIdx.x;!
    for (int s=0; s<Nspin; s++) {!
      for (int c=0; c<Ncolor; c++) {!
!    …!
      }!
    }!
  }
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Current Status
▪ Framework is working but still slow

Fine grid on GPU 
Coarse grid on CPU 
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Heterogeneous Updating Scheme
• Multiplicative MG is necessarily 

serial process 
– Cannot utilize both GPU and 

CPU simultanesouly 
• Additive MG is parallel 

– Can utilize both GPU and CPU 
simultanesouly 

• Additive MG requires accurate 
coarse-grid solution 
– Not amenable to multi-level 
– Only need additive correction at 

CPU<->GPU level interface 
• Accurate coarse grid solution 

maybe cheaper than 
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Heterogeneous Updating Scheme
• Multiplicative MG is necessarily 

serial process 
– Cannot utilize both GPU and 

CPU simultanesouly 
• Additive MG is parallel 

– Can utilize both GPU and CPU 
simultanesouly 

• Additive MG requires accurate 
coarse-grid solution 
– Not amenable to multi-level 
– Only need additive correction 

at CPU<->GPU level interface 
• Accurate coarse-grid solution 

maybe cheaper than 
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FUTURE DIRECTIONS…



  

S
G

E
M

M
 /

 W
 N

o
r
m

a
li
z
e
d
 

2012 2014 2008 2010 2016 

Tesla 
CUDA 

Fermi 
FP64 

Kepler 
Dynamic Parallelism 

Maxwell 
DX12 

Pascal 

Unified Memory 

3D Memory 

NVLink 

 

20 

16 

12 

8 

6 

2 

0 

4 

10 

14 

18 

Strong GPU Roadmap



Q
C

D
N

A
 2

01
4 Introducing NVLINK and Stacked Memory 

NVLINK 

!   GPU high speed interconnect 
!   80-200 GB/s 
!   Planned support for POWER CPUs 

Stacked Memory 

!   4x Higher Bandwidth (~1 TB/s) 
!   3x Larger Capacity 
!   4x More Energy Efficient per bit 
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Speed of CPU Memory 

TESLA 
GPU 

CPU 

DDR Memory Stacked Memory 

NVLink 
80 GB/s 

DDR4 
50-75 GB/s  

HBM 
1 Terabyte/s 
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The Future of GPUs
▪GPUs viable because of multi $B gaming market 
▪Coming to an end anytime soon?
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The Future of GPUs
▪Each photo-realistic image takes ~2 seconds 
▪Photo-realistic imagery requires ~200x faster 
▪Add physics 
▪ Rigid body mechanics  
▪Computational fluid dynamics (smoke, water, wind) 
▪Hair 
▪ etc. 
▪GPUs aren’t slowing down anytime soon
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Exploiting Locality 
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Future Directions - Locality
• Where locality does not exist, let’s create it 

– E.g., Multi-source solvers 
– Staggered Dslash performance, K20X 
– Transform a memory-bound  

into a cache-bound problem 
– Entire solver will remain 

bandwidth bound
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Future Directions - Communication
• Only scratched the surface of domain-decomposition algorithms 

– Disjoint additive 
– Overlapping additive 
– Alternating boundary conditions 
– Random boundary conditions 
– Multiplicative Schwarz 
– Precision truncation



Q
C

D
N

A
 2

01
4

Future Directions - Latency
• Global sums are bad 

– Global synchronizations 
– Performance fluctuations 

• New algorithms are required 
– S-step CG / BiCGstab, etc. 
– E.g., Pipeline CG vs. Naive 

• One-sided communication 
– MPI-3 expands one-sided communications 
– Cray Gemini has hardware support 
– Asynchronous algorithms? 

• Random Schwarz has exponential convergence
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Hierarchical Algorithm Toolbox
• Real goal is to produce scalable and optimal solvers 
• Exploit closer coupling of precision and algorithm 

– QUDA designed for complete run-time specification of 
precision at any point in the algorithm 

– Currently supports 64-bit, 32-bit, 16-bit 
– Is 128-bit or 8-bit useful at all for hierarchical algorithms? 

• Domain-decomposition (DD) and multigrid 
– DD solvers are effective for high-frequency dampening 
– Overlapping domains likely more important at coarser scales?
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Summary
• Introduction to QUDA library 
• Production library for GPU-accelerated LQCD 

– Scalable linear solvers 
– Coverage for most LQCD algorithms 

• Efforts now focussed on strong scaling optimal algorithms 
• Domain decomposition 
• Eigenvector solvers 
• Adaptive multigrid 
• Mixed precision 

• Hierarchical and heterogeneous algorithm research toolbox 
– Aim for scalability and optimality 

• Lessons today are relevant for Exascale preparation
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