QCDNA 2014

GPU ALGORITHMS FOR LATTICE QCD

M Clark NVIDIA

Contents **GPU** Computing QUDA Library Mixed-Precision Solvers Strong scaling algorithms Eigenvectors Solvers Multigrid Summary

From this...

...to this

What is a GPU?

- Kepler K20X (2012)
 2688 processing cores
 3995 SP Gflops peak
- Effective SIMD width of 32 threads (warp)
- Deep memory hierarchy
- As we move away from registers

 Bandwidth decreases
 - Latency increases
- Programmed using a thread model
 - -Architecture abstraction is known as CUDA
 - Fine-grained parallelism required
- Diversity of programming languages
 CUDA C/C++/Fortran
 - OpenACC, OpenMP 4.0
 - -Python, etc.

Enter QUDA

2014

- Provides:
- Various solvers for all major fermonic discretizations, with multi-GPU support — Additional performance-critical routines needed for gauge-field generation Maximize performance / Minimize time to science Exploit physical symmetries to minimize memory traffic
- - Mixed-precision methods
 - Autotuning for high performance on all CUDA-capable architectures Domain-decomposed (Schwarz) preconditioners for strong scaling Eigenvector solvers (Lanczos and EigCG) new!

 - Multigrid solvers for optimal convergence new!

• "QCD on CUDA" - <u>http://lattice.github.com/quda</u> • Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.

QUDA is community driven

- Ron Babich (NVIDIA)
- Kip Barros (LANL)
- Rich Brower (Boston University)
- Michael Cheng (Boston University)
- MAC (NVIDIA)
- Justin Foley
- Joel Giedt (Rensselaer Polytechnic Institute)
- Steve Gottlieb (Indiana University)
- Bálint Joó (Jlab)
- Hyung-Jin Kim (BNL)
- Jian Liang (IHEP)
- Claudio Rebbi (Boston University)
- Guochun Shi (NCSA -> Google)
- Alexei Strelchenko (Cyprus Institute -> FNAL)
- Alejandro Vaquero (Cyprus Institute)
- Frank Winter (UoE -> Jlab)
- Yibo Yang (IHEP)

The Dirac Operator

Quark interactions are described by the Dirac operator - First-order PDE acting with a background field - Large sparse matrix

Dirac spin projector matrices (4x4 spin space) $\equiv -\frac{1}{2}D_{x,x'} + (4+m+A_x)\delta_{x,x'}$

- 4-d nearest neighbor stencil operator acting on a vector field Eigen spectrum is complex (typically real positive)

Mapping the Dirac operator to CUDA

- Finite difference operator in LQCD is known as Dslash • Assign a single space-time point to each thread - V = XYZT threads, e.g., V = 24^4 => 3.3×10^6 threads

- Looping over direction each thread must
 - Load the neighboring spinor (24 numbers x8)
 - Load the color matrix connecting the sites (18 numbers x8)
 - Do the computation

2014

- Save the result (24 numbers)
- QUDA reduces memory traffic
- Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
 - Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
 - Similarity transforms to increase operator sparsity
 - Use 16-bit fixed-point representation
 - No loss in precision with mixed-precision solver
 - Almost a free lunch (small increase in iteration count)

Tesla K20X

Gflops	3995
GB/s	250
AI	16

Kepler Wilson-Dslash Performance

Wilson Dslash K20X performance $V = 24^3 x T$

Linear Solvers

- Nature of eigen-spectrum constrains which solver choice
 - CGNE / CGNR
 - BiCGstab
 - GMRES
- Condition number inversely proportional to mass
 - Light (realistic) masses are highly singular
- Entire solver algorithm must run on GPUs
 - Time-critical kernel is the stencil application (SpMV)
 - Also require BLAS level-1 type operations
- BLAS is becoming the Amdahl's law of naive linear solvers
 - Global sums are expensive
 - BLAS are bandwidth bound

while $(|\mathbf{r}_k| \geq \varepsilon)$ { $\beta_k = (\mathbf{r}_k, \mathbf{r}_k)/(\mathbf{r}_{k-1}, \mathbf{r}_{k-1})$ $\mathbf{p}_{k+1} = \mathbf{r}_k - \beta_k \mathbf{p}_k$ $q_{k+1} = A p_{k+1}$ $\alpha = (\mathbf{r}_k, \mathbf{r}_k) / (\mathbf{p}_{k+1}, \mathbf{q}_{k+1})$ $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha \mathbf{q}_{k+1}$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_{k+1}$ k = k+1

> conjugate gradient

Can rectify through e.g., s-step methods and/or preconditioners

Kepler Wilson-Solver Performance

Wilson CG K20X performance $V = 24^{3}xT$

Chroma

24³x128 lattice Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge

Mixed-precision solvers

- QUDA has had mixed-precision from the get go Almost a free lunch where it works well (wilson/clover) - Residual injection / reliable updates mixed-precision BiCGstab
 - 2 Tflops sustained in workstation (4 GPUs)
- Did not work well for CG (staggered / twisted mass / dwf) - double-single has increased iteration count
- double-half non convergent Why is this?
 - BiCGstab noisy as hell anyway
- CG recurrence relations much more intolerant Need to make CG more robust
 - Make double-half work

- Less polishing in mixed-precision multi-shift solver

(Stable) Mixed-precision CG

- Genergy Convergence relies on gradient vector being orthogonal to residual
 - Re-project when injecting new residual
- α chosen to minimize $|e|_A$ – True irrespective of precision of p, q, r - Solution correction is truncated if we keep low precision x Always keep solution vector in high precision
- β computation relies on $(r_i, r_j) = |r_i|^2 \delta_{ij}$
 - Not true in finite precision

2014

- Polak-Ribière formula is equivalent and self-stabilizing through local orthogonality

 $\beta_k = \alpha(\alpha(q_k, q_k) - (p_k, q_k))/(r_{k-1}, r_{k-1})$ Further improvement possible - Mining the literature on fault-tolerant solvers...

while $(|\mathbf{r}_k| \geq \varepsilon)$ { $\beta_k = (\mathbf{r}_k, \mathbf{r}_k)/(\mathbf{r}_{k-1}, \mathbf{r}_{k-1})$ $\mathbf{p}_{k+1} = \mathbf{r}_k - \beta_k \mathbf{p}_k$ $q_{k+1} = A p_{k+1}$ $\alpha = (\mathbf{r}_k, \mathbf{r}_k)/(\mathbf{p}_{k+1}, \mathbf{q}_{k+1})$ $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha \mathbf{q}_{k+1}$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_{k+1}$ k = k+1

Comparison of staggered double-half solvers $V = 16^4 m = 0.001$

Multi-GPU Implementation

- Scalable multi-GPU solver required
 - cuda streams to overlap comms and compute
 - Packing kernels for contiguous data for MPI
 - Utilize GPU Direct for low-latency inter-GPU communication

Strong Scaling Chroma with DD

Chroma

48³x512 lattice

Communication-Reducing Algorithms

- Reduce inter-node communication and synchronization Inter-node communication comes from face exchange Synchronization comes from global sums
- lacksquare

- sites in Ω_1
- sites in Ω_2
- sites in Ω_3
- sites in Ω_4

Utilize domain-decomposition techniques, e.g., Additive Schwarz

Communication-Reducing Algorithms

- Non-overlapping blocks simply switch off inter-node comms Preconditioner is a gross approximation - Use an iterative solver to solve each domain
- - system
 - Only block-local sums required Require only ~10 iterations of domain solver
 - \Rightarrow 16-bit precision
- Need to use a flexible solver \implies GCR
- Block-diagonal preconditioner impose λ cutoff

 - Limits scalability of algorithm In practice, non-preconditioned part becomes source of Amdahl

Strong Scaling Chroma with DD

Extreme Scaling

Deflation Algorithms in QUDA EigCG implemented in QUDA (Alexei Strelchenko)

1 U = [], H = []2 for $s = 1, ..., s_1$: $x_0 = UH^{-1}U^H b_s$ 3 $[x_i, V, H] = eigCG(nev, m, A, x_0, b_i)$ //eigCG part 4 5 $[U,H] = \mathsf{RayleighRitz}[U,\bar{V}]$ 6 end for

//accum. Ritz vectors $//for s_1 RHS$ //Galerkin proj. $\bar{V} =$ orthogonalize V against U = //(not strictly needed)

Deflation Algorithms in QUDA

- Use MAGMA library for required LAPACK functionality
- Memory not a problem EigCG only works on subsets Cache full set on CPU
- Extensible eigenvector solver framework for future solvers
 - EigBiCG
 - GMRES-DR
 - etc.

Deflation Algorithms in QUDA

degenerate twisted mass $24^{3}x48$, $\kappa = 0.161231$, $\mu = 0.0085$

Mixed-Precision Deflation Algorithms

Mixed-precision CG

- Precision-truncated residual is ignorant of low modes
- This can causes breakdown in CG recurrence relations
- Ameliorated by using reliable updates (and other methods)
- EigCG phase seems to need double precision
 - eigenvector set

Non-deflated double-single CG: 15 sec Non-deflated double-half CG: (does not converge) InitCG double-single initCG: 2.42 sec InitCG double-half initCG: 1.84 sec Achieved speedup ~8X for initCG (combination of algorithm and precision)

Loss of precision in finding Ritz vectors results in very poor

Deflated CG is hugely stabilized once low modes projected out • double-half solvers now completely stable at light quark mass • e.g. degenerate twisted mass $24^3 \times 48$, $\kappa = 0.161231$, $\mu = 0.0040$

Mixed Precision Deflation Algorithms

double-single

double-half

degenerate twisted mass $24^3 \times 48$, $\kappa = 0.161231$, $\mu = 0.0040$

Adaptive Geometric Multigrid

Osborn et al 2011

Adaptive Geometric Multigrid

- Adaptively find candidate null-space vectors
 - Dynamically learn the null space and use this to define the prolongator
 - Algorithm is self learning

Setup

Set solver to be simple smoother If convergence good enough, solver setup complete ➡ Typically use 4⁴ geometric blocks Preserve chirality when coarsening $R = \gamma_5 P^{\dagger} \gamma_5 = P^{\dagger}$ \square Construct coarse operator ($D_c = R D P$) Recurse on coarse problem Set solver to be augmented V-cycle, goto 2

Adaptive Geometric Multigrid

Adaptive Geometric Multigrid

240 vectors 20 vectors

Babich et al 2010

Motivation

- A CPU running the optimal algorithm surpasses a highly tuned GPU sub-optimal algorithm
- For competitiveness, MG on GPU is a must
- Seek multiplicative gain of architecture and algorithm

Chroma propagator benchmark Figure by Balint Joo MG Chroma integration by Saul Cohen MG Algorithm by James Osborn

2014 A Z O

The Challenge of Multigrid on GPU

- GPU requirements very different from CPU - Each thread is slow, but O(10,000) threads per GPU
- Fine grids run very efficiently High parallel throughput problem
- Coarse grids are worst possible scenario
 - More cores than degrees of freedom
 - Increasingly serial and latency bound
 - Little's law (bytes = bandwidth * latency)
 - Amdahl's law limiter
- Multigrid decomposes problem into throughput and latency parts

Hierarchical algorithms on heterogeneous architectures

GPU

Thousands of cores for parallel processing

CPU

Few Cores optimized for serial work

Ingredients for Parallel Adaptive Multigrid

Prolongation construction (setup)

- Block orthogonalization of null space vectors
- Sort null-space vectors into block order (locality)
- Batched QR decomposition
- Smoothing (relaxation on a given grid)
 - Repurpose the domain-decomposition preconditioner

Prolongation

- interpolation from coarse grid to fine grid
- one-to-many mapping

Restriction

- restriction from fine grid to coarse grid
- many-to-one mapping

Coarse Operator construction (setup)

- Evaluate *R A P* locally
- Batched (small) dense matrix multiplication

Coarse grid solver

- direct solve on coarse grid
- (near) serial algorithm

Design Goals

- Performance
 - LQCD typically reaches high % peak peak performance
 - Brute force can beat the best algorithm
- Flexibility
 - Deploy level *i* on either CPU or GPU
 - All algorithmic flow decisions made at runtime
 - Autotune for a given *heterogeneous* architecture
- (Short term) Provide optimal solvers to legacy apps
 - e.g., Chroma, CPS, MILC, etc.
- (Long term) Hierarchical algorithm toolbox
 - Little to no barrier to trying new algorithms

Multigrid and QUDA QUDA designed to abstract algorithm from the heterogeneity

cudaColorSpinorField

Multigrid and QUDAQUDA designed to abstract algorithm from the heterogeneity

Algorithms

cudaColorSpinorField cpuColo

2014 N N N N

Multigrid and QUDA QUDA designed to abstract algorithm from the heterogeneity

ColorSpinorField

cudaColorSpinorField

Multigrid and QUDA Algorithms are straightforward to write down QUDA Multigrid V-cycle source:

if (param.level < param.Nlevel) {</pre>

(*coarse)(*x_coarse, *r_coarse);

} else { (*coarsesolver)(x, b); // do the coarse grid solve

```
void MG::operator()(ColorSpinorField &x, ColorSpinorField &b) {
   (*presmoother)(x, b);
// do the pre smoothing
   transfer->R(*r_coarse, *r); // restrict to the coarse grid
                                // recurse to the next lower level
   (*postsmoother)(x,b); // do the post smoothing
```

Parallel Implementation

Coarse operator looks like a Dirac operator - Link matrices have dimension $N_v \times N_v$ (e.g., 20 x 20)

$$\hat{D}_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'} = -\sum_{\mu} \left[Y_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'}^{-\mu} \delta_{\mathbf{i}+\mu,\mathbf{j}} + Y_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'}^{+\mu\dagger} \delta_{\mathbf{i}-\mu,\mathbf{j}} \right] + \left(M - X_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'} \right) \delta_{\mathbf{i}\hat{s}\hat{c},\mathbf{j}\hat{s}'\hat{c}'}$$

Fine vs. Coarse grid parallelization - Coarse grid points have limited thread-level parallelism - Highly desirable to parallelize over fine grid points where possible Parallelization of internal degrees of freedom? - Color / Spin degrees of freedom are tightly coupled (dense matrix) - Each thread loops over color / spin dimensions - Rely on instruction-level parallelism for latency hiding Parallel multigrid uses common parallel primitives

- - Reduce, sort, etc.
 - Use CUB parallel primitives for high performance

Writing the same code for two architectures

- Use C++ templates to abstract arch specifics Load/store order, caching modifiers, precision, intrinsics
- CPU and GPU almost identical - CPU and GPU kernels call the same functions
 - Index computation (for loop -> thread id)

Block reductions (shared memory reduction and / or atomic operations)

Writing the same code for two architectures

platform specific load/store here: field order, cache modifiers, textures arg.A.load(a);

... // do computation

arg.A.save(a); return norm(a);

```
template<...> void fooCPU(Arg &arg) {
  arg.sum = 0.0;
#pragma omp for
  for (int x=0; x<size; x++) platform specific parallelization
    arg.sum += bar<...>(arg, x);
```

CPU

GPU: shared memory CPU: OpenMP, vectorization

```
template<...> host device Real bar(Arg & arg, int x) {
  // do platform independent stuff here
  complex<Real> a[arg.length];
```

platform independent stuff goes here 99% of computation goes here

```
template<...> global void fooGPU(Arg arg) {
  int tid = threadIdx.x + blockIdx.x*blockDim.x;
  real sum = bar<...>(arg, tid);
   shared typename BlockReduce::TempStorage tmp;
  arg.sum = cub::BlockReduce<...>(tmp).Sum(sum);
```

GPU

The compilation problem...

- global memory (L1 / L2 / DRAM)

template <typename ProlongateArg> int x = blockIdx.x*blockDim.x + threadIdx.x; for (int s=0; s<Nspin; s++) {</pre> for (int c=0; c<Ncolor; c++) {</pre>

 Tightly-coupled variables should be at the register level • Dynamic indexing cannot be resolved in register variables - Array values with indices not known at compile time spill out into

```
_global___ void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {
```

The compilation problem...

 Tensor product between different parameters - O(10,000 combinations) per kernel Only compile necessary kernel at runtime

```
template <typename Arg, int Ncolor, int Nspin>
             global void prolongate(Arg arg) {
              int x = blockIdx.x*blockDim.x + threadIdx.x;
              for (int s=0; s<Nspin; s++) {</pre>
                for (int c=0; c<Ncolor; c++) {</pre>
• JIT compilation will fix this
```

• All *internal* parameters must be known at *compile* time - Template over every possible combination O(10,000) combinations

Current Status Framework is working but still slow

Fine grid on GPU Coarse grid on CPU

Heterogeneous Updating Scheme

- Multiplicative MG is necessarily serial process
- Cannot utilize both GPU and CPU simultanesouly

Heterogeneous Updating Scheme

- Multiplicative MG is necessarily serial process
- Cannot utilize both GPU and CPU simultanesouly
- Additive MG is parallel
 - Can utilize both GPU and CPU simultanesouly
- Additive MG requires accurate coarse-grid solution
 - Not amenable to multi-level
 - Only need additive correction at CPU<->GPU level interface
- Accurate coarse-grid solution maybe cheaper than

QCDNA 2014

FUTURE DIRECTIONS...

Strong GPU Roadmap

Pascal

Unified Memory 3D Memory -NVLink-

Introducing NVLINK and Stacked Memory

NVLINK

- GPU high speed interconnect
 - 80-200 GB/s
- Planned support for POWER CPUs

Stacked Memory

4x Higher Bandwidth (~1 TB/s)
3x Larger Capacity
4x More Energy Efficient per bit

NVLink Enables Data Transfer At Speed of CPU Memory

TESLA GPU

NVLink 80 GB/s

HBM HBM 1 Terabyte/s

Stacked Memory

DDR Memory

The Future of GPUs GPUs viable because of multi \$B gaming market Coming to an end anytime soon?

The Future of GPUs Add physics Rigid body mechanics Hair etc.

- Each photo-realistic image takes ~2 seconds Photo-realistic imagery requires ~200x faster
 - Computational fluid dynamics (smoke, water, wind)

GPUs aren't slowing down anytime soon

(days) $(10^{5})^{30}$ time 10⁴ (3y) real 10^{3} 100 101987

Gflops sustained

Future Directions - Locality

- Where locality does not exist, let's create it
 - E.g., Multi-source solvers
 - Staggered Dslash performance, K20X
 - Transform a memory-bound into a cache-bound problem Entire solver will remain
 - bandwidth bound

Future Directions - Communication Only scratched the surface of domain-decomposition algorithms

- Disjoint additive
 - Overlapping additive
 - Alternating boundary conditions
 - Random boundary conditions
 - Multiplicative Schwarz Precision truncation

Future Directions - Latency

- Global sums are bad
 - Global synchronizations
- Performance fluctuations New algorithms are required - S-step CG / BiCGstab, etc.
 - E.g., Pipeline CG vs. Naive
- One-sided communication
 - MPI-3 expands one-sided communications
 - Cray Gemini has hardware support
 - Asynchronous algorithms?
 - Random Schwarz has exponential convergence

Hierarchical Algorithm Toolbox

- Real goal is to produce scalable and optimal solvers Exploit closer coupling of precision and algorithm
- - QUDA designed for complete run-time specification of precision at any point in the algorithm
 - Currently supports 64-bit, 32-bit, 16-bit
 - Is 128-bit or 8-bit useful at all for hierarchical algorithms?
- Domain-decomposition (DD) and multigrid - DD solvers are effective for high-frequency dampening
 - Overlapping domains likely more important at coarser scales?

Summary

- Introduction to QUDA library
- Production library for GPU-accelerated LQCD Scalable linear solvers
 - Coverage for most LQCD algorithms
- - Domain decomposition
 - Eigenvector solvers
 - Adaptive multigrid
 - Mixed precision
- Aim for scalability and optimality
- Lessons today are relevant for Exascale preparation

• Efforts now focussed on strong scaling optimal algorithms

• Hierarchical and heterogeneous algorithm research toolbox

QCDNA 2014

BACK UP SLIDES

