Eigenvalue routines for overlap fermions

June 20
Nigel Cundy
Weonjong Lee, Seonghee Kim

Introduction

- The overlap operator is (theoretically) the cleanest Dirac operator available in lattice QCD - everybody should be using it
- It is also the most expensive Dirac operator available, and the most difficult algorithmically, and it is unlikely that the advantages of exact chiral symmetry in the massless limit outweigh the costs - nobody should be using it
- Nonetheless, it is important to confirm our calculations using different methods
- Some studies, for which chiral perturbation theory cannot compensate for the symmetry breaking (QCD Vacuum? Chiral Magnetic Effect?) may be easier or more accurate with overlap fermions
- Reducing the cost of overlap simulations is thus a worthy area of study

$$
D=\frac{1}{2}\left(1+\mu+(1-\mu) \gamma_{5} \operatorname{sign}(K)\right)
$$

- K is some Hermitian Kernel operator - say $\gamma_{5}\left(D_{W}-1\right)$.
- μ is a mass parameter
- Lots of theoretical advantages, mostly associated with an exact chiral symmetry as $\mu \rightarrow 0$.
- Five approaches to simulate the matrix sign function
- Spectral Decomposition: $\operatorname{sign}(K)=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \operatorname{sign}\left(\lambda_{i}\right)$.
- Lanczos approach (I won't discuss further)
- Polynomial Approximation (e.g. Chebychev)
- Rational Approximation (e.g. Zolotarev)
- Five Dimensional representation (I won't discuss further)
- The full spectral decomposition is impractical, but partial deflation is essential
- Rational approximations generally require fewer calls to K
- Polynomial approximations require less additional spinor algebra per call to K
- In most of these methods, it is much cheaper (perhaps a factor of 10) to calculate a low accuracy approximation to the matrix sign function compared to a high accuracy approximation
- Low accuracy sign functions only require single precision
- The goal when designing a routine for overlap fermions is to use as low accuracy approximation to the sign function as much as possible
- It is known how to do this for inversions:
- Start with a high accuracy overlap operator, and gradually relax the accuracy until the last few calls are low accuracy
- Use a low accuracy inversion as a preconditioner for a high accuracy inversion
- In total, we get at least a factor of 5 or 6 over the naive inversion.

- SUMR $=$ Shifted Unitary Minimal Residual (the optimal Krylov subspace algorithm for overlap fermions).
- But what about the eigenvalues?
- Eigenvalues/vectors are needed in lattice QCD observables:
- To deflate the inversion (low accuracy)
- To reduce the measurement error of certain observable on each configuration (Low Mode Averaging, Truncated Eigenvalue Approximation) (high accuracy)
- To directly calculate observables (e.g. Chiral Condensate, QCD vacuum) (high accuracy)
- The overlap operator is shifted unitary - a normal operator
- The eigenvalues lie on a circle in the complex plane
- Real eigenvalues ψ_{0}, ψ_{1} at $\lambda= \pm 1$
- Other eigenvalues in complex conjugate pairs $\lambda_{ \pm}=\lambda^{2} \pm$ $i \lambda \sqrt{1-\lambda^{2}}$
- The Hermitian overlap operator $\gamma_{5} D$ has eigenvalues $\pm \lambda$ with eigenvectors $\psi_{ \pm}$
- The squared Hermitian overlap operator $D^{\dagger} D$ has degenerate non-zero eigenvalues
- $\gamma_{5} \psi_{ \pm, i}$ is a linear combination of $\psi_{+, i}$ and $\psi_{-, i}$
- we can construct the eigenvectors from just about any nontrivial function of γ_{5} and $\operatorname{sign}(K)$
- The eigenvectors of $D, \gamma_{5} D, D^{\dagger} D$ are independent of the quark mass
- Deflation constructs a preconditioner or a starting guess for the inversion using the smallest eigenvalues and eigenvectors
- The condition number of the operator improves by the ratio of the smallest and largest eigenvalues you calculate
- In typical lattice simulations, possible to get a factor of >5 gain
- This is perhaps slightly old technology (Multigrid?) but still useful in some circumstances
- Obviously larger lattice, mixed action approaches require more eigenvalues so the problem becomes harder
- Method 1: $A x=b$, for any A and routine
- We construct an initial guess x_{0} from the eigenvectors of A

$$
x_{0}=\sum_{i} \alpha_{i} \psi_{i}
$$

- We choose α_{i} to minimise the residual $\left\|A x_{0}-b\right\|$.
- Construct the 'eigenvector' basis so $\psi_{i} A^{\dagger} A \psi_{j}$ is diagonal

$$
\alpha_{i}=\frac{\left(\psi_{i}, A b\right)}{\left(\psi_{i}, A^{\dagger} A \psi_{i}\right)}
$$

- This method accelerates the inversion until the inversion residual \sim the eigenvector residual.
- After that, the inversion proceeds at the undeflated rate.
- Deflate the low accuracy preconditioner - only need low accuracy eigenvalues.

- Method 2: Invert $A x=b, A$ Hermitian and positive definite

$$
\begin{aligned}
x & =P \frac{1}{P A P} P \\
P & =\left(1-\sum_{i} \psi_{i} \psi_{i}^{\dagger}\right)+\sum_{i} \psi_{i} \psi_{i}^{\dagger} \frac{\sqrt{c}}{\sqrt{\lambda_{i}}}
\end{aligned}
$$

- The eigenvalues/eigenvector $\left(\lambda_{i} / \psi_{i}\right)$ need only be calculated to a very low accuracy to achieve the full gain
- If the cost of applying the pre-conditioner \approx the cost of applying A, this method may not be useful
- For overlap fermions, who cares?
- But only useful for the CG inversion of $1 / D^{\dagger} D$
- SUMR, multishift etc., cannot use this preconditioning
- Method 2 tends to be better, where it can be used.
- Here we want to consider four eigenvalue routines for overlap fermions
- eigSUMR
- Explicitly restarted Unitary Lanczos
- Jacobi-Davidson
- Zolotarev
- The SUMR (shifted Unitary Minimal Residual) routine is a way of constructing an Arnoldi Basis for unitary and shifted unitary operators using short recurrences
- Hermitian/Lanzos \Leftrightarrow Shifted Unitary/SUMR
- It generates a series of orthonormal vectors $q_{i}, i=0, \ldots m-1$ in the Krylov subspace $K_{m}(b)=\left\{b, A b, A^{2} b, \ldots, A^{m-1} b\right\}$
- $U=\gamma_{5} \operatorname{sign}(K)$ is unitary - applicable for $\frac{2 D}{1-\mu}=\frac{1+\mu}{1-\mu}+U$

$$
\begin{aligned}
& q_{0}=\tilde{q}_{0}=b /\|b\| \\
& \text { for } j \text { in } 0,1,2,3,4, \ldots ; \text { do } \\
& \qquad u=U q_{j} \\
& \gamma_{j}=-\left(\tilde{q}_{j}, u\right) ; \quad \sigma_{j}=\sqrt{1-\left|\gamma_{j}\right|^{2}} \\
& q_{j+1}=\frac{1}{\sigma_{j}}\left(u+\gamma_{j} \tilde{q}_{j}\right) ; \quad \tilde{q}_{j+1}=\sigma_{j} \tilde{q}_{j}+\gamma_{j}^{*} q_{j+1} \\
& \text { done }
\end{aligned}
$$

- This recurrance can be used for a minimal residual inversion routine
- For a inversion, what accuracy η do we need to calculate U at each iteration j to maintain a desired final accuracy for the inversion $\left\|r_{j}\right\| \equiv\left\|A x_{j}-b\right\| \leq \epsilon_{A}\|b\|$?

$$
\left\|b-A x_{k}\right\| \leq\left\|r_{k}-\left(b-A x_{k}\right)\right\|+\left\|r_{k}\right\|
$$

- We want to control the residual gap, $\left\|r_{k}-\left(b-A x_{k}\right)\right\|$, so that it is smaller than the target accuracy
- The optimal result for a minimal residual agorithm is

$$
\eta_{j}=\epsilon_{A}\|b\| /\left\|r_{j}\right\|
$$

- Now suppose we want to use this subspace to calculate n eigenvalues where we can at most store m vectors?
$q_{0}=\tilde{q}_{0}=b /\|b\| ; \quad \mathbf{v}=0 ; \quad \mathbf{v}^{D}=0 ; \quad k=0$
for j in $0,1,2,3,4, \ldots$; do
$u=U q_{j} ; \quad v_{k}=q_{j} ; \quad v_{k}^{D}=\frac{(1-\mu)}{2} u+\frac{(1+\mu)}{2} q_{j}$
$k=k+1$
if $(k==m)$; then
Diagonalise $M_{i j}=\left(v_{i}^{D}, v_{j}^{D}\right)+\delta_{E}\left(v_{i}, \gamma_{5} v^{D}\right)$
$k=n$
end if
$\gamma_{j}=-\left(\tilde{q}_{j}, u\right) ; \quad \sigma_{j}=\sqrt{1-\left|\gamma_{j}\right|^{2}} ;$
$q_{j+1}=\frac{1}{\sigma_{j}}\left(u+\gamma_{j} \tilde{q}_{j}\right) ; \quad \tilde{q}_{j+1}=\sigma_{j} \tilde{q}_{j}+\gamma_{j}^{*} q_{j+1}$
done
Diagonalise $M_{i j}=\left(v_{i}^{D}, v_{j}^{D}\right)+\delta\left(v_{i}, \gamma_{5} v^{D}\right)$
- To remove degeneracies for the non-zero eigenvalues, we diagonalise

$$
\begin{aligned}
M_{i j} & =\left(v_{i}^{D}, v_{j}^{D}\right)+\delta_{E}\left(v_{i}, \gamma_{5} v^{D}\right) \\
& =\left(v_{i},\left(\gamma_{5} D \gamma_{5} D+\delta_{E} \gamma_{5} D\right) v_{j}\right)
\end{aligned}
$$

($\delta_{E}=$ some small number).

- Obviously we can combine this with an inversion routine
- The basic idea is exactly the same as the eigCG algorithm
- We have called this routine eigSUMR
- Once the eigenvalues are good enough, we can start deflating
- Or we can run it as a stand alone eigenvalue solver - Unitary Lanczos
- The diagonalisation routine proceeds in two steps
- We use an LDU decomposition to orthonormalise v; $\left(v_{i}, v_{j}\right)=\left(U^{\dagger} D U\right)_{i j} \quad(U$ upper triangular, D diagonal (1or - 1)
- We use a spectral decomposition to diagonalise $\left(U^{\dagger} M U\right)=$ $V^{\dagger} D^{\prime} V$ (V unitary, D^{\prime} diagonal)
- The improved estimate of the eigenvectors is $v \rightarrow\left(V U^{T}\right)_{j i} v$
- It is useful to separately rediagonalise each non-zero eigenvector pair with respect to $\left(v_{i}, \gamma_{5} v_{j}^{D}\right)$
- In principle, we do not need any additional calls to the overlap operator beyond the generation of the Krylov subspace to calculate the eigenvalues/eigenvectors
- In practice, the story is somewhat different
- If $v_{i}^{D} \approx D v_{i}$ becomes too inaccurate, then the whole eigenvalue calculation disintegrates
- So how accurate do we need v^{D} for the eigenvalue calculation to remain stable?
- We use an approximate matrix sign function \tilde{s} (with s the exact sign function)
- This leads to an approximate Dirac operator \tilde{D} and an approximate \tilde{v}^{D}. We can write,

$$
\tilde{v}^{D}=v^{D}+\delta,
$$

- Our goal is to keep $\|\delta\|$ sufficiently small so that it has no significant effect on the estimate of the eigenvalue or the residual r^{v}

$$
r_{i}^{v}=\left(v_{i},\left(\gamma_{5} D\right)^{2} v_{i}\right)-\left(v_{i}, \gamma_{5} D v_{i}\right)^{2}
$$

- In inexact arithmetic

$$
\begin{gathered}
r^{v}=r_{\text {true }}^{v}+\gamma_{5} \delta-v\left(v, \gamma_{5} \delta\right) \\
\left\|r^{v}\right\|^{2}=\left\|r_{\text {true }}^{v}\right\|^{2}+\left(r_{\text {true }}^{v},\left(1-v v^{\dagger}\right) \gamma_{5} \delta\right)+ \\
\left(\left(1-v v^{\dagger}\right) \gamma_{5} \delta, r_{\text {true }}^{v}\right)+\left(\delta,\left(1-v v^{\dagger}\right) \delta\right)
\end{gathered}
$$

- The residual gap, $g=\left\|r^{v}\right\|^{2}-\left\|r_{\text {true }}^{v}\right\|^{2}$
- We want to keep $g<\epsilon^{2}$, where ϵ is the desired accuracy for the eigenvector.

$$
g \leq 2\left\|r_{\text {true }}^{v}\right\|\|\delta\|+\|\delta\|^{2}<\epsilon^{2} .
$$

This bound gives

$$
\|\delta\|<\sqrt{\epsilon^{2}+\left\|r_{\text {true }}^{v}\right\|^{2}}-\left\|r_{\text {true }}^{v}\right\| .
$$

During each update of the eigenvectors, we know that

$$
\begin{aligned}
v_{i} & \rightarrow\left(V U^{T}\right)_{i j} v_{j} \\
\tilde{v}_{i}^{D} & \rightarrow\left(V U^{T}\right)_{i j} \tilde{v}_{j}^{D}=\left(V U^{T}\right)_{i j} v_{j}^{D}+\left(V U^{T}\right)_{i j} \delta_{j}^{D}
\end{aligned}
$$

where δ_{j}^{D} is either

- The previously calculated error on an eigenvector
- Due to the application of D in the SUMR routine
- The new δ_{i} satisfies the bound

$$
\left\|\delta_{i}\right\|<\sum_{j=1}^{m} \mid(U V)_{i j}\| \| \delta_{j}^{D} \|
$$

- The rigorous bound computes the matrix sign function to an accuracy

$$
\left\|\delta_{j}^{D}\right\|<\frac{1}{(m-n) k} \frac{\sqrt{\epsilon^{2}+\left\|r_{\text {true }, 0}^{v}\right\|^{2}}-\left\|r_{\text {true }, 0}^{v}\right\|}{\max _{n<j \leq m, i<n^{\prime}}\left|(U V)_{i j}\right|}
$$

- We need to recalculate v^{D} to a high accuracy every k iterations
- $\left\|r_{\text {true }, 0}^{v}\right\|$ is the residual of the best converged eigenvector
- $\max _{i j}\left|(U V)_{i j}\right|$ may be estimated from the previous diagonalisations
- In practice, this is more conservative than we require, and we instead found the 'sloppy bound' works well

$$
\begin{aligned}
\left\|\delta_{j}^{D}\right\| & <\frac{\chi}{\sqrt{(m-n) k}} \frac{\sqrt{\epsilon^{2}+\left\|r_{\text {true }, 0}^{v}\right\|^{2}}-\left\|r_{\text {true }, 0}^{v}\right\|}{\max _{n^{\prime}<j \leq m, i<n}\left|(U V)_{i j}\right|} \\
\chi & =\left\{\begin{array}{lr}
\frac{1}{\sqrt{(m-n) k}} & \text { First few diagonalisations } \\
\sqrt{n} & \text { Subsequent diagonalisations }
\end{array}\right.
\end{aligned}
$$

- This bound is $O(\epsilon)$
- We cannot usefully employ relaxation in eigSUMR to calculate eigenvectors to a high accuracy
- We can, of course, decrease the bound after each restart of the inverter - but this doesn't help so much in practice
- The SUMR q vectors quickly lose othogonolity when the overlap operator is calculated to a low accuracy
- If the SUMR vectors are not orthogonal, we need to project out the eigenvectors

$$
\begin{array}{r}
v_{j} \rightarrow v_{j}-v_{i}\left(v_{i}, v_{j}\right) \\
v_{j}^{D} \rightarrow v_{j}^{D}-v_{i}^{D}\left(v_{i}, v_{j}\right)
\end{array}
$$

- We can quickly lose accuracy on v^{D} if there are near duplicate eigenvectors
- Need to continually check the accuracy of v^{D} and be prepared to recalculate it
- The gain from deflation:

- All plots on an $8^{3} \times 32$ dynamical overlap ensemble, lattice spacing $\sim 0.12 \mathrm{fm}$, quark mass $\mu=0.03, m_{\pi} \sim 460 \mathrm{MeV}$
- The number of Wilson calls needed to calculate the eigenvectors:

- The number of SUMR iterations needed to calculate the eigenvectors:

- The number of CG iterations needed to calculate the eigenvectors:

- The accuracy of the 29 th V^{D} :

- The residuals compared to number of Arnoldi iterations

- Note that the convergence of the eigenvectors slows down dramatically after a certain residual
- EigSUMR/Unitary Lanczos are good for low accuracy eigenvectors; bad for high accuracy eigenvectors.
- The residual for the relaxed and unrelaxed unitary Lanczos routines compared to number of Wilson calls

Jacobi Davidson

- Suppose we have a guess of the lowest eigenvalue of a matrix A, \mathbf{u}.
- We define the Ritz estimate of the eigenvalue, λ and the residual, \mathbf{r} as

$$
\lambda=\frac{(\mathbf{u}, A \mathbf{u})}{(\mathbf{u}, \mathbf{u})} \quad \mathbf{r}=A \mathbf{u}-\lambda \mathbf{u}
$$

- The true eigenvalue λ_{*} and eigenvector \mathbf{u}_{*} satisfy the eigenvalue equation,

$$
A \mathbf{u}_{*}=\lambda_{*} \mathbf{u}_{*}
$$

- We write

$$
\mathbf{u}_{*}=\mathbf{u}+\mathbf{s}
$$

- \mathbf{s} is a small correction orthogonal to \mathbf{u}.

$$
\left(A-\lambda^{\prime}\right)(\mathbf{u}+\mathbf{s})=\left(\lambda_{*}-\lambda^{\prime}\right)(\mathbf{u}+\mathbf{s})
$$

or

$$
\left(A-\lambda^{\prime}\right) \mathbf{s}=-\mathbf{r}+\left(\lambda_{*}-\lambda^{\prime}\right) \mathbf{u}+\left(\lambda_{*}-\lambda^{\prime}\right) \mathbf{s}
$$

where λ^{\prime} is any real number.

- We set λ^{\prime} to the best estimate available for λ_{*}
- Neglect terms of $\mathrm{O}\left(s^{2}\right)$.
- Projecting into the subspace orthogonal to \mathbf{u}.

$$
\left(1-\mathbf{u} \mathbf{u}^{\dagger}\right)\left(A-\lambda^{\prime}\right)\left(1-\mathbf{u} \mathbf{u}^{\dagger}\right) \mathbf{s}=-\mathbf{r}+O\left(\mathbf{s}^{2}\right)
$$

- This gives us our approximation to \mathbf{s},

$$
\mathbf{s} \sim-\frac{1}{\left(1-\mathbf{u u}^{\dagger}\right)(A-\lambda)\left(1-\mathbf{u u}^{\dagger}\right)} \mathbf{r}
$$

- We now construct an orthonormal basis of vectors $V=$ $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \ldots\right\}$, and find $V^{A}=\left\{\mathbf{v}_{\mathbf{1}}^{\mathbf{A}}, \mathbf{v}_{\mathbf{2}}^{\mathbf{A}}, \mathbf{v}_{\mathbf{3}}^{\mathbf{A}}, \ldots\right\}=A V$.
- We can obtain an improved estimate of the eigenvectors by diagonalising $E_{i j}=\left(v_{i}^{A}, v_{j}\right)$.
- By setting $\mathbf{v}_{1}=\mathbf{u}$ and then $\mathbf{v}_{2}=\mathbf{s}$, we can obtain the best estimate of the eigenvector in the subspace of \mathbf{u} and \mathbf{s}.
- We repeat this process, until we have an accurate enough estimate of the eigenvector
- As long as we start close enough to the eigenvalue, it converges rapidly
- To expand this method for multiple eigenvectors, we use a subspace orthogonal to the eigenvectors already calculated
- This method puts the bulk of the work into inversions
- For overlap fermions, we no how to do an inversion efficiently
- We can calculate more low accuracy eigenvectors we need, and build up an eigenvalue preconditioner
- For degenerate eigenvalues (zero modes), we need to expand the projector $\left(1-\mathbf{u u}^{\dagger}\right)$ over our current estimate of the zero-mode subspace.
- The non-zero eigenvectors come in pairs, so by calculating ψ_{i}, then $\psi_{i+1} \sim\left(1-\psi_{i} \psi_{i}^{\dagger}\right) \gamma_{5} \psi_{i}$
- We need 3-4 inversions per eigenvector if we start from an accuracy $\sim 10^{-3}$.
- Jacobi-Davidson works well if we have a small number of eigenvectors calculated to a reasonable precision
- We require a reasonable initial guess to the eigenvectors, both for the deflation and to have a good starting (λ, u)

Zolotarev eigenvectors

- Basic idea: create a vector $b=\sum_{i} \psi_{i}$, where ψ_{i} are our best guesses of the eigenvectors
- Apply a step function $R=\frac{1}{2}\left(1-\operatorname{sign}\left(A-\lambda_{0}\right) \operatorname{sign}\left(A+\lambda_{0}\right)\right)$ to project b into the desired eigenvector subspace
- λ_{0} lies between the largest eigenvalue we want to calculate to a high accuracy and the largest low accuracy eigenvector we possess
- Then use a Lanczos procedure to extract the wanted eigenvectors from $b^{\prime}=R b$
- In principle, we can use one set of inversions (on the same input vector) to calculate as many eigenvalues as we need.
- In practice, not as simple as this.
- We can see that $\left(b^{\prime}=\sum_{i} \psi_{i}+\delta\right)$

$$
\begin{gathered}
\left(\begin{array}{llllll}
F_{1}(A) b^{\prime} & F_{2}(A) b^{\prime} & F_{3}(A) b^{\prime} & F_{4}(A) b^{\prime}
\end{array}\right)-\left(\begin{array}{llll}
F_{1}(A) \delta & F_{2}(A) \delta & F_{3}(A) \delta & \left.F_{4}(A) \delta\right)
\end{array}\right)= \\
\left(\begin{array}{lllll}
\psi_{1} & \psi_{2} & \psi_{3} & \psi_{4}
\end{array}\right)\left(\begin{array}{llll}
F_{1}\left(\lambda_{1}\right) & F_{2}\left(\lambda_{1}\right) & F_{3}\left(\lambda_{1}\right) & F_{4}\left(\lambda_{1}\right) \\
F_{1}\left(\lambda_{2}\right) & F_{2}\left(\lambda_{2}\right) & F_{3}\left(\lambda_{2}\right) & F_{4}\left(\lambda_{2}\right) \\
F_{1}\left(\lambda_{3}\right) & F_{2}\left(\lambda_{3}\right) & F_{3}\left(\lambda_{3}\right) & F_{3}\left(\lambda_{3}\right) \\
F_{1}\left(\lambda_{4}\right) & F_{2}\left(\lambda_{4}\right) & F_{3}\left(\lambda_{4}\right) & F_{4}\left(\lambda_{4}\right)
\end{array}\right)
\end{gathered}
$$

$$
(B-\Delta)=\Psi \Lambda
$$

- F_{i} are arbitrary polynomial functions
- These need to be tuned so we use the smallest number of calls to the overlap operator to achieve $\left\|\Delta \Lambda^{-1}\right\|<\epsilon$
- We know (approximately) what the leading contributions to Δ, and we know what Λ is
- Choose $F_{i}=c_{i n}\left(A / \lambda_{*}\right)^{n}$, for $n=1,2, \ldots N$
- Find the coefficients $c_{i n}, \lambda_{*}$ and N which minimise $8\left(\left\|\Delta \Lambda^{-1}\right\|\right)^{3}+N$
- Then use those functions to efficiently extract the eigenvectors from b^{\prime}
- To avoid degeneracies, we used the operator

$$
A=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \pm \frac{1}{2}\left(1 \pm \gamma_{5}\right) \operatorname{sign}(K) \frac{1}{2}\left(1 \pm \gamma_{5}\right)
$$

- This gives one of each eigenvector pair; we can easily reconstruct the second member of the pair
- There are difficulties (not yet fully resolved)
- Rounding errors limit the accuracy of the eigenvectors we can achieve
- Rounding errors also limit the number of F vectors we can usefully use
- The matrix sign function $\operatorname{sign}\left(A \pm \lambda_{0}\right)$ can be approximated to a low but good enough accuracy by a Zolotarev rational approximation.
- We can use a multishift solver for the largest shifts, and switch to a deflated preconditioned eigCG inversion for the smaller shifts
- We require fewer inversions than the number of eigenvalues calculated each time
- In principle, this should beat Jacobi-Davidson to get the eigenvectors out to a moderate accuracy
- Finally, we can use Jacobi-Davidson to quickly polish the eigenvectors to a high accuracy if necessary.
- Number of Wilson calls for first n eigenvectors to converge to 10^{-9} precision
- N additional low accuracy eigenvectors.

n	N	Arnoldi	Jacobi-Davidson	Zolotarev
20	30	-	4.0×10^{7}	4.6×10^{7}

- These results are not final; both Jacobi-Davidson and Zolotarev can be improved
- We started in each case from eigenvectors with residuals between 10^{-6} and 10^{-2}.

Conclusions

- We have calculated bounds for the accuracy of the overlap operator required for a Arnoldi/SUMR eigenvalue routine to converge
- We need to use a high accuracy matrix sign for the entire Arnoldi calculation
- The convergence of the Arnoldi routine slows down considerably after a certain accuracy is reached
- The Jacobi-Davidson and Zolotarev routines can calculate eigenvectors to a high accuracy reasonably quickly using a low accuracy Dirac operator
- The Jacobi-Davidson routine currently wins on our test lattices
- We still have further optimisations to make, especially for the Zolotarev routine
- The Zolotarev routine seems to be particular sensitive to floating point errors, a problem we need to resolve

