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Introduction

e The overlap operator is (theoretically) the cleanest Dirac
operator available in lattice QCD — everybody should be using
it

e It is also the most expensive Dirac operator available, and
the most difficult algorithmically, and it is unlikely that the
advantages of exact chiral symmetry in the massless limit
outweigh the costs — nobody should be using it

e Nonetheless, it is important to confirm our calculations using
different methods

e Some studies, for which chiral perturbation theory cannot
compensate for the symmetry breaking (QCD Vacuum? Chiral
Magnetic Effect?) may be easier or more accurate with overlap
fermions

e Reducing the cost of overlap simulations is thus a worthy area
of study
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D = %(1 + p+ (1 — p)yssign(K))

e K is some Hermitian Kernel operator — say v5(Dw — 1).
e /i is @ mass parameter

e Lots of theoretical advantages, mostly associated with an
exact chiral symmetry as u — 0.
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e Five approaches to simulate the matrix sign function
— Spectral Decomposition: sign(K) = > . [1) (i|sign( ;).
— Lanczos approach (I won't discuss further)
— Polynomial Approximation (e.g. Chebychev)
— Rational Approximation (e.g. Zolotarev)
— Five Dimensional representation (I won't discuss further)

e The full spectral decomposition is impractical, but partial
deflation is essential

e Rational approximations generally require fewer calls to K

e Polynomial approximations require less additional spinor
algebra per call to K

e In most of these methods, it is much cheaper (perhaps a factor
of 10) to calculate a low accuracy approximation to the matrix
sign function compared to a high accuracy approximation

e Low accuracy sign functions only require single precision
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e The goal when designing a routine for overlap fermions is to
use as low accuracy approximation to the sign function as
much as possible

e It is known how to do this for inversions:

— Start with a high accuracy overlap operator, and gradually
relax the accuracy until the last few calls are low accuracy

— Use a low accuracy inversion as a preconditioner for a high
accuracy inversion

e In total, we get at least a factor of 5 or 6 over the naive
Inversion.
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e SUMR = Shifted Unitary Minimal Residual
(the optimal Krylov subspace algorithm for overlap fermions).
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e But what about the eigenvalues?
e Eigenvalues/vectors are needed in lattice QCD observables:

— To deflate the inversion (low accuracy)

— To reduce the measurement error of certain observable
on each configuration (Low Mode Averaging, Truncated

Eigenvalue Approximation) (high accuracy)
— To directly calculate observables (e.g. Chiral Condensate,
QCD vacuum) (high accuracy)
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e The overlap operator is shifted unitary — a normal operator

e The eigenvalues lie on a circle in the complex plane

e Real eigenvalues 9y, ¥ at A = £1

e Other eigenvalues in complex conjugate pairs Ay = \? +
iIA1 — N2

e [he Hermitian overlap operator v5D has eigenvalues =X\ with
eigenvectors 4

e The squared Hermitian overlap operator DD has degenerate
non-zero eigenvalues

® Y514 ; is a linear combination of ¥4 ; and ¥_ ;

e we can construct the eigenvectors from just about any non-
trivial function of 5 and sign(K)

e The eigenvectors of D, v5D, DD are independent of the
quark mass
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e Deflation constructs a preconditioner or a starting guess for
the inversion using the smallest eigenvalues and eigenvectors

e The condition number of the operator improves by the ratio
of the smallest and largest eigenvalues you calculate

e In typical lattice simulations, possible to get a factor of > 5
gain

e This is perhaps slightly old technology (Multigrid?) but still
useful in some circumstances

e Obviously larger lattice, mixed action approaches require more
eigenvalues so the problem becomes harder
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e Method 1: Ax = b, for any A and routine
— We construct an initial guess xy from the eigenvectors of A

Lo = Z Oéz'%'
i

— We choose «; to minimise the residual ||Azg — b|.
— Construct the ‘eigenvector’ basis so wiATij is diagonal

o; =

— This method accelerates the inversion until the inversion
residual ~ the eigenvector residual.

— After that, the inversion proceeds at the undeflated rate.

— Deflate the low accuracy preconditioner — only need low
accuracy eigenvalues.
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e Method 2: Invert Ax = b, A Hermitian and positive definite

1
—_p_—p
T="pAP

/e
P =(1 —zi:%@) +;¢¢¢j\/£

— The eigenvalues/eigenvector (\;/v;) need only be
calculated to a very low accuracy to achieve the full gain

— If the cost of applying the pre-conditioner ~ the cost of
applying A, this method may not be useful

— For overlap fermions, who cares?

— But only useful for the CG inversion of 1/D7D
— SUMR, multishift etc., cannot use this preconditioning

e Method 2 tends to be better, where it can be used.
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e Here we want to consider four eigenvalue routines for overlap
fermions

— eigSUMR

— Explicitly restarted Unitary Lanczos
— Jacobi-Davidson

— Zolotarev
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e The SUMR (shifted Unitary Minimal Residual) routine is a
way of constructing an Arnoldi Basis for unitary and shifted
unitary operators using short recurrences

e Hermitian/Lanzos < Shifted Unitary/SUMR

e |t generates a series of orthonormal vectors ¢;, 1 =0,...m—1
in the Krylov subspace K,,(b) = {b, Ab, A®b,..., A" 1b}

o U = ~5sign(K) is unitary — applicable for 12—Du = }J_FZ +U

qo = Go = b/||b]]
for yin0,1,2,3,4,...; do
U = UQj
vi=—(Gu); 5= 1/1— |yl
1 - ~ - x
9j+1 = ;(U +7%54);  dj+1 = 0545 + V54541
J
done

Yale, June 20 2014 14/42



Nigel Cundy Progress Report

This recurrance can be used for a minimal residual inversion
routine

For a inversion, what accuracy n do we need to calculate U
at each iteration j to maintain a desired final accuracy for the
inversion ||r;|| = ||Az; — b|| < €al|b]|?

10— Azy|| < [re = (0 = Azg)|| + [|7x]]

. SO

We want to control the residual gap, ||ry — (b — Axy)
that it is smaller than the target accuracy

The optimal result for a minimal residual agorithm is

n; = €allbll/||r;]]
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e Now suppose we want to use this subspace to calculate n
eigenvalues where we can at most store m vectors?

5 D
g0 =Gdo =b/lIbll; v=0; v’ =0; k=0
forjin0,1,2,3,4,...; do
D (1—p) (14 p)
u:qu; Uk:qj; Uk: = 5 u -+ 5 j
k=k+1

if (k == m); then

Diagonalise Mij = (UZ'D, U]D) + 6 g (v;, '75UD)
k=mn
end if

v = (@) a5 =4/1— |74
1 ~ ~ ~ *k
qj41 = ;(U + ’Yij); dj+1 = 09545 +7j95+1
J

done

Diagonalise Mij = (UZ'D, UJD) + 8(v;, '75UD)
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e To remove degeneracies for the non-zero eigenvalues, we
diagonalise

M5 =(v,v7) + g (vi, y50°)
=(v4, (v5DvsD + 0gvsD)v;)

(0 = some small number).
e Obviously we can combine this with an inversion routine
e The basic idea is exactly the same as the eigCG algorithm
e We have called this routine eigSUMR
e Once the eigenvalues are good enough, we can start deflating

e Or we can run it as a stand alone eigenvalue solver — Unitary
Lanczos
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e The diagonalisation routine proceeds in two steps

— We use an LDU decomposition to orthonormalise v;
(vi,v;) = (UTDU);; (U upper triangular, D diagonal
(lor — 1)

— We use a spectral decomposition to diagonalise (UTMU) =
VID'V (V unitary, D' diagonal)

— The improved estimate of the eigenvectorsisv — (VU?') ;v

e |t is useful to separately rediagonalise each non-zero

eigenvector pair with respect to (v;, v5v;”)
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In principle, we do not need any additional calls to the overlap
operator beyond the generation of the Krylov subspace to
calculate the eigenvalues/eigenvectors

In practice, the story is somewhat different

|f ’U,L-D ~ Dwv; becomes too inaccurate, then the whole
eigenvalue calculation disintegrates

So how accurate do we need v” for the eigenvalue calculation
to remain stable?
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e We use an approximate matrix sign function § (with s the
exact sign function)

~

e This leads to an approximate Dirac operator DD and an
approximate v”. We can write,

oP =P 4+,

e Our goal is to keep ||d]| sufficiently small so that it has no
significant effect on the estimate of the eigenvalue or the
residual 7"

74’1'] — (Uiv (75D)2Ui) - (Uia 75DU73)2
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e In inexact arithmetic

rt = T’rcvrue + 755 - ’U(’U, 755)7

72117 = llrpell® + (ries (1 — v07)758)+
((1 o UUT),‘V557 r’zjrue) + (57 (1 o UUT)5)'
e The residual gap, g = ||7°||* — ||7Zu||?
e We want to keep g < €2, where ¢ is the desired accuracy for
the eigenvector.

g < 2[lrgellllol + I6]* < €.
This bound gives

1811 < Ve + lIrfuell® = lIriruell-
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During each update of the eigenvectors, we know that

V; %(VUT)ijUj

’l~}ZD %(VUT)ZJ’TJJD = (VUT)ZJ’UJD I (VUT)ZJ5JD,

where 531-7 is either

— The previously calculated error on an eigenvector
— Due to the application of D in the SUMR routine

e The new 0; satisfies the bound

16:11 <> 1(UV)i5ll1671I-

g=il
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e The rigorous bound computes the matrix sign function to an
accuracy

1 /@ F el = rbueol

(m —n)k MaXy, < j<m,i<n/ |(UV)z'j\ ’

D
10511 <

e We need to recalculate v” to a high accuracy every k iterations
® |74 ue0ll is the residual of the best converged eigenvector

e max;; |[(UV);;|] may be estimated from the previous
diagonalisations
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e In practice, this is more conservative than we require, and we
instead found the ‘sloppy bound’ works well

167 <——X V& + e oll? = e ol
J \/(m _ n)k maxn/<j§m,i<’n |(UV)7']‘
1

X = V (m_n)k

Vn Subsequent diagonalisations

First few diagonalisations
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e This bound is O(e)

e We cannot usefully employ relaxation in eigSUMR to calculate
eigenvectors to a high accuracy

e \We can, of course, decrease the bound after each restart of
the inverter — but this doesn’'t help so much in practice

e The SUMR ¢ vectors quickly lose othogonolity when the
overlap operator is calculated to a low accuracy

e If the SUMR vectors are not orthogonal, we need to project
out the eigenvectors

Vj; — UV — Ui(?)i, Uj)

jD — ’U?-,D(’Ui, Uj)

D
Vi v
e We can quickly lose accuracy on v? if there are near duplicate
eigenvectors
e Need to continually check the accuracy of v and be prepared
to recalculate it
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e The gain from deflation:

10%
GMRES(relCG) ——
GMRES(deflated relCG) ——
2 GMRES(relSUMR) ——
10 GMRES(deflated relSUMR) ——

1 L
1072}

10_4 -

residual

10_6 -

10_8 -

1010 |

10— 12

0 10000 20000 30000 40000
Calls to Kernel operator

o All plots on an 8% x 32 dynamical overlap ensemble, lattice
spacing ~ 0.12 fm, quark mass = 0.03, m, ~ 460 MeV
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e The number of Wilson calls needed to -calculate the
eigenvectors:

6
1 ' ' ' GMRES(re[SUMR) ——
GMRES(calculating relSUMR 1) ——
104 1 GMRES(calculating relSUMR 3) —— |
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residual
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e The number of SUMR iterations needed to calculate the
eigenvectors:

4
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e The number of CG iterations needed to calculate the
eigenvectors:

104 T T T T T
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e The accuracy of the 29th V7:

10— 4 . .

%curacy of v/ —— |
arget accuracy
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e The residuals compared to number of Arnoldi iterations

%enva|ue 1 residual (relaxed
Elgenva e 1 residual (full accuracy

%enva ue 30 residual (relaxed
Eigenvalue 30 residual (full accuracy

10

residual

0 50 100 150 200 250
[terations

e Note that the convergence of the eigenvectors slows down
dramatically after a certain residual

e EigSUMR/Unitary Lanczos are good for low accuracy
eigenvectors; bad for high accuracy eigenvectors.
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e The residual for the relaxed and unrelaxed unitary
Lanczos routines compared to number of Wilson calls

' ' %envalue 1 residual (relaxed) ——
Elgenva e 1 residual (full accuracy) ——
10 Eigenvalue 30 residual (relaxed) —— 1
Eigenvalue 30 residual (full accuracy) ——
1 _
101 ]
TU 1
=]
o ]
$ 1072} ]
1073} ]
10-4} .
107°

3100 6x10%  9x10® 12x107 15x107 1.8x107
Calls to Kernel operator
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Jacobi Davidson

e Suppose we have a guess of the lowest eigenvalue of a matrix
A, u.

e We define the Ritz estimate of the eigenvalue, A and the
residual, r as

A
A :M r =Au — \u.

(1, u)

e The true eigenvalue A\, and eigenvector u, satisfy the
eigenvalue equation,

Au, = \,u,.
e \We write

U, — u -+ S,
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e s is a small correction orthogonal to u.
(A= X)(u+s)= A= N)(u+s),
or
(A=XN)s=—-r+ (A = N)u+ (A — \)s,

where )\ is any real number.
e \We set )\ to the best estimate available for ),
e Neglect terms of O(s?).
e Projecting into the subspace orthogonal to u.

(1 —uu")(4 - XN)(1 —uu')s = —r + O(s?).

e This gives us our approximation to s,

1
(1 —ua)(A— N1 —uul)

S~ —
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e We now construct an orthonormal basis of vectors V =
{v1,va,Vvs,...}, and find V4 = {v} v& vg, ...} = AV.

e We can obtain an improved estimate of the eigenvectors by
diagonalising E;; = (v, v;).

e By setting vi = u and then vy, = s, we can obtain the best
estimate of the eigenvector in the subspace of u and s.

e \We repeat this process, until we have an accurate enough
estimate of the eigenvector

e As long as we start close enough to the eigenvalue, it converges
rapidly

e To expand this method for multiple eigenvectors, we use a
subspace orthogonal to the eigenvectors already calculated

Yale, June 20 2014 35/42



Nigel Cundy Progress Report

e This method puts the bulk of the work into inversions
e For overlap fermions, we no how to do an inversion efficiently

e We can calculate more low accuracy eigenvectors we need,
and build up an eigenvalue preconditioner

e For degenerate eigenvalues (zero modes), we need to expand
the projector (1 — uu') over our current estimate of the
zero-mode subspace.

e The non-zero eigenvectors come in pairs, so by calculating v;,
then 41 ~ (1 — Yoy ys¥

e We need 3-4 inversions per eigenvector if we start from an
accuracy ~ 1073,

e Jacobi-Davidson works well if we have a small number of
eigenvectors calculated to a reasonable precision

e \We require a reasonable initial guess to the eigenvectors, both
for the deflation and to have a good starting (A, u)
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Zolotarev eigenvectors

e Basic idea: create a vector b = ) . 1;, where 1); are our best
guesses of the eigenvectors

e Apply a step function R = 2(1 — sign(A — X\g)sign(4 + Xo))
to project b into the desired eigenvector subspace

e )¢ lies between the largest eigenvalue we want to calculate to
a high accuracy and the largest low accuracy eigenvector we
pOSsess

e Then use a Lanczos procedure to extract the wanted
eigenvectors from b’ = Rb

e In principle, we can use one set of inversions (on the same
input vector) to calculate as many eigenvalues as we need.

e |n practice, not as simple as this.
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e We can see that (' =) . 9; +9)

( Fraw Ry Fy(An  FyAp )-( Fi(A)s
Fi(A1)  Fa(Ap)

F1(M9) F5(\9)
(%1 Y2 Y3 s )( Fi(xg) F§<A§>

F1(Ag)  Fa(Myg)

(B—A) = TA

e [} are arbitrary polynomial functions

Fy(A)S

F3(A1)
F3(A9)
F3(A3)
F3(Ayg)

P3(A)s  Fy(A) ) =

Fg(A1)
Fg(A2)
F3(A3)
Fp(Xg)

e [hese need to be tuned so we use the smallest number of
calls to the overlap operator to achieve ||AA™!|| < €

e We know (approximately) what the leading contributions to

A , and we know what A is
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e Choose F; = c;jn(A/A)", formn=1,2,...N

e Find the coefficients ¢;,, A« and N which minimise
8([AATH)° + N

e Then use those functions to efficiently extract the eigenvectors
from b’

e To avoid degeneracies, we used the operator
1 1 . 1
A= (L £75) £ 5(1 £5)sign(K) (1 £ 75)

e This gives one of each eigenvector pair; we can easily
reconstruct the second member of the pair
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e There are difficulties (not yet fully resolved)

e Rounding errors limit the accuracy of the eigenvectors we can
achieve

e Rounding errors also limit the number of F' vectors we can
usefully use

e The matrix sign function sign(A &+ A\p) can be approximated
to a low but good enough accuracy by a Zolotarev rational
approximation.

e We can use a multishift solver for the largest shifts, and switch
to a deflated preconditioned eigCG inversion for the smaller
shifts

e We require fewer inversions than the number of eigenvalues
calculated each time

e In principle, this should beat Jacobi-Davidson to get the
eigenvectors out to a moderate accuracy

e Finally, we can use Jacobi-Davidson to quickly polish the
eigenvectors to a high accuracy if necessary.
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e Number of Wilson calls for first n eigenvectors to converge to
10~ precision
e NN additional low accuracy eigenvectors.

n N Arnoldi Jacobi-Davidson Zolotarev
20 30 - 4.0 x 10° 4.6 x 10"
e [hese results are not final; both Jacobi-Davidson and
Zolotarev can be improved

e We started in each case from eigenvectors with residuals
between 107% and 1072.
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Conclusions

e We have calculated bounds for the accuracy of the overlap
operator required for a Arnoldi/SUMR eigenvalue routine to
converge

e We need to use a high accuracy matrix sign for the entire
Arnoldi calculation

e The convergence of the Arnoldi routine slows down
considerably after a certain accuracy is reached

e [he Jacobi-Davidson and Zolotarev routines can calculate
eigenvectors to a high accuracy reasonably quickly using a low
accuracy Dirac operator

e The Jacobi-Davidson routine currently wins on our test lattices

e We still have further optimisations to make, especially for the
Zolotarev routine

e The Zolotarev routine seems to be particular sensitive to
floating point errors, a problem we need to resolve

Yale, June 20 2014 42/42



