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Introduction

• The overlap operator is (theoretically) the cleanest Dirac
operator available in lattice QCD – everybody should be using
it

• It is also the most expensive Dirac operator available, and
the most difficult algorithmically, and it is unlikely that the
advantages of exact chiral symmetry in the massless limit
outweigh the costs – nobody should be using it

• Nonetheless, it is important to confirm our calculations using
different methods

• Some studies, for which chiral perturbation theory cannot
compensate for the symmetry breaking (QCD Vacuum? Chiral
Magnetic Effect?) may be easier or more accurate with overlap
fermions

• Reducing the cost of overlap simulations is thus a worthy area
of study
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D =
1

2
(1 + µ+ (1− µ)γ5sign(K))

• K is some Hermitian Kernel operator – say γ5(DW − 1).

• µ is a mass parameter

• Lots of theoretical advantages, mostly associated with an
exact chiral symmetry as µ→ 0.
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• Five approaches to simulate the matrix sign function

– Spectral Decomposition: sign(K) =
∑

i |ψi〉〈ψi|sign(λi).
– Lanczos approach (I won’t discuss further)

– Polynomial Approximation (e.g. Chebychev)

– Rational Approximation (e.g. Zolotarev)

– Five Dimensional representation (I won’t discuss further)

• The full spectral decomposition is impractical, but partial
deflation is essential

• Rational approximations generally require fewer calls to K

• Polynomial approximations require less additional spinor
algebra per call to K

• In most of these methods, it is much cheaper (perhaps a factor
of 10) to calculate a low accuracy approximation to the matrix
sign function compared to a high accuracy approximation

• Low accuracy sign functions only require single precision
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• The goal when designing a routine for overlap fermions is to
use as low accuracy approximation to the sign function as
much as possible

• It is known how to do this for inversions:

– Start with a high accuracy overlap operator, and gradually
relax the accuracy until the last few calls are low accuracy

– Use a low accuracy inversion as a preconditioner for a high
accuracy inversion

• In total, we get at least a factor of 5 or 6 over the naive
inversion.
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• SUMR = Shifted Unitary Minimal Residual
(the optimal Krylov subspace algorithm for overlap fermions).
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• But what about the eigenvalues?

• Eigenvalues/vectors are needed in lattice QCD observables:

– To deflate the inversion (low accuracy)

– To reduce the measurement error of certain observable
on each configuration (Low Mode Averaging, Truncated
Eigenvalue Approximation) (high accuracy)

– To directly calculate observables (e.g. Chiral Condensate,
QCD vacuum) (high accuracy)
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• The overlap operator is shifted unitary – a normal operator

• The eigenvalues lie on a circle in the complex plane

• Real eigenvalues ψ0, ψ1 at λ = ±1

• Other eigenvalues in complex conjugate pairs λ± = λ2 ±
iλ
√
1− λ2

• The Hermitian overlap operator γ5D has eigenvalues ±λ with
eigenvectors ψ±

• The squared Hermitian overlap operator D†D has degenerate
non-zero eigenvalues

• γ5ψ±,i is a linear combination of ψ+,i and ψ−,i

• we can construct the eigenvectors from just about any non-
trivial function of γ5 and sign(K)

• The eigenvectors of D, γ5D, D†D are independent of the
quark mass
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• Deflation constructs a preconditioner or a starting guess for
the inversion using the smallest eigenvalues and eigenvectors

• The condition number of the operator improves by the ratio
of the smallest and largest eigenvalues you calculate

• In typical lattice simulations, possible to get a factor of > 5
gain

• This is perhaps slightly old technology (Multigrid?) but still
useful in some circumstances

• Obviously larger lattice, mixed action approaches require more
eigenvalues so the problem becomes harder
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• Method 1: Ax = b, for any A and routine

– We construct an initial guess x0 from the eigenvectors of A

x0 =
∑

i

αiψi

– We choose αi to minimise the residual ‖Ax0 − b‖.
– Construct the ‘eigenvector’ basis so ψiA

†Aψj is diagonal

αi =
(ψi, Ab)

(ψi, A†Aψi)

– This method accelerates the inversion until the inversion
residual ∼ the eigenvector residual.

– After that, the inversion proceeds at the undeflated rate.

– Deflate the low accuracy preconditioner – only need low
accuracy eigenvalues.
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• Method 2: Invert Ax = b, A Hermitian and positive definite

x =P
1

PAP
P

P =(1−
∑

i

ψiψ
†
i ) +

∑

i

ψiψ
†
i

√
c√
λi

– The eigenvalues/eigenvector (λi/ψi) need only be
calculated to a very low accuracy to achieve the full gain

– If the cost of applying the pre-conditioner ≈ the cost of
applying A, this method may not be useful

– For overlap fermions, who cares?

– But only useful for the CG inversion of 1/D†D

– SUMR, multishift etc., cannot use this preconditioning

• Method 2 tends to be better, where it can be used.
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• Here we want to consider four eigenvalue routines for overlap
fermions

– eigSUMR

– Explicitly restarted Unitary Lanczos

– Jacobi-Davidson

– Zolotarev
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• The SUMR (shifted Unitary Minimal Residual) routine is a
way of constructing an Arnoldi Basis for unitary and shifted
unitary operators using short recurrences

• Hermitian/Lanzos ⇔ Shifted Unitary/SUMR
• It generates a series of orthonormal vectors qi, i = 0, . . .m−1
in the Krylov subspace Km(b) = {b,Ab, A2b, . . . , Am−1b}

• U = γ5sign(K) is unitary – applicable for 2D
1−µ = 1+µ

1−µ + U

q0 = q̃0 = b/‖b‖
for j in 0, 1, 2, 3, 4, . . . ; do

u = Uqj

γj = −(q̃j, u); σj =
√

1− |γj|2

qj+1 =
1

σj
(u+ γjq̃j); q̃j+1 = σj q̃j + γ∗j qj+1

done
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• This recurrance can be used for a minimal residual inversion
routine

• For a inversion, what accuracy η do we need to calculate U
at each iteration j to maintain a desired final accuracy for the
inversion ‖rj‖ ≡ ‖Axj − b‖ ≤ ǫA‖b‖?

||b− Axk|| ≤ ||rk − (b−Axk)||+ ||rk||

• We want to control the residual gap, ||rk − (b − Axk)||, so
that it is smaller than the target accuracy

• The optimal result for a minimal residual agorithm is

ηj = ǫA‖b‖/‖rj‖
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• Now suppose we want to use this subspace to calculate n
eigenvalues where we can at most store m vectors?

q0 = q̃0 = b/‖b‖; v = 0; v
D = 0; k = 0

for j in 0, 1, 2, 3, 4, . . . ; do

u = Uqj; vk = qj; vDk =
(1 − µ)

2
u+

(1 + µ)

2
qj

k = k + 1

if (k == m); then

Diagonalise Mij = (v
D
i , v

D
j ) + δE(vi, γ5v

D
)

k = n

end if

γj = −(q̃j, u); σj =
√

1 − |γj|
2;

qj+1 =
1

σj
(u+ γjq̃j); q̃j+1 = σjq̃j + γ

∗
j qj+1

done

Diagonalise Mij = (v
D
i , v

D
j ) + δ(vi, γ5v

D
)
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• To remove degeneracies for the non-zero eigenvalues, we
diagonalise

Mij =(vDi , v
D
j ) + δE(vi, γ5v

D)

=(vi, (γ5Dγ5D + δEγ5D)vj)

(δE = some small number).

• Obviously we can combine this with an inversion routine

• The basic idea is exactly the same as the eigCG algorithm

• We have called this routine eigSUMR

• Once the eigenvalues are good enough, we can start deflating

• Or we can run it as a stand alone eigenvalue solver – Unitary
Lanczos
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• The diagonalisation routine proceeds in two steps

– We use an LDU decomposition to orthonormalise v;
(vi, vj) = (U †DU)ij (U upper triangular, D diagonal
(1or − 1)

– We use a spectral decomposition to diagonalise (U †MU) =
V †D′V (V unitary, D′ diagonal)

– The improved estimate of the eigenvectors is v → (V UT )jiv

• It is useful to separately rediagonalise each non-zero
eigenvector pair with respect to (vi, γ5v

D
j )

Yale, June 20 2014 18/42



Nigel Cundy Progress Report

• In principle, we do not need any additional calls to the overlap
operator beyond the generation of the Krylov subspace to
calculate the eigenvalues/eigenvectors

• In practice, the story is somewhat different

• If vDi ≈ Dvi becomes too inaccurate, then the whole
eigenvalue calculation disintegrates

• So how accurate do we need vD for the eigenvalue calculation
to remain stable?

Yale, June 20 2014 19/42



Nigel Cundy Progress Report

• We use an approximate matrix sign function s̃ (with s the
exact sign function)

• This leads to an approximate Dirac operator D̃ and an
approximate ṽD. We can write,

ṽD = vD + δ,

• Our goal is to keep ‖δ‖ sufficiently small so that it has no
significant effect on the estimate of the eigenvalue or the
residual rv

rvi = (vi, (γ5D)2vi)− (vi, γ5Dvi)
2
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• In inexact arithmetic

rv = rvtrue + γ5δ − v(v, γ5δ),

‖rv‖2 = ‖rvtrue‖2 + (rvtrue, (1− vv†)γ5δ)+

((1− vv†)γ5δ, r
v
true) + (δ, (1− vv†)δ).

• The residual gap, g = ‖rv‖2 − ‖rvtrue‖2
• We want to keep g < ǫ2, where ǫ is the desired accuracy for
the eigenvector.

g ≤ 2‖rvtrue‖‖δ‖+ ‖δ‖2 < ǫ2.

This bound gives

‖δ‖ <
√

ǫ2 + ‖rvtrue‖2 − ‖rvtrue‖.
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During each update of the eigenvectors, we know that

vi →(V UT )ijvj

ṽDi →(V UT )ijṽ
D
j = (V UT )ijv

D
j + (V UT )ijδ

D
j ,

where δDj is either

– The previously calculated error on an eigenvector

– Due to the application of D in the SUMR routine

• The new δi satisfies the bound

‖δi‖ <
m
∑

j=1

|(UV )ij|‖δDj ‖.
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• The rigorous bound computes the matrix sign function to an
accuracy

‖δDj ‖ <
1

(m− n)k

√

ǫ2 + ‖rvtrue,0‖2 − ‖rvtrue,0‖
maxn<j≤m,i<n′ |(UV )ij|

,

• We need to recalculate vD to a high accuracy every k iterations

• ‖rvtrue,0‖ is the residual of the best converged eigenvector

• maxij |(UV )ij| may be estimated from the previous
diagonalisations
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• In practice, this is more conservative than we require, and we
instead found the ‘sloppy bound’ works well

‖δDj ‖ <
χ

√

(m− n)k

√

ǫ2 + ‖rvtrue,0‖2 − ‖rvtrue,0‖
maxn′<j≤m,i<n |(UV )ij|

χ =

{

1√
(m−n)k

First few diagonalisations
√
n Subsequent diagonalisations

.
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• This bound is O(ǫ)
• We cannot usefully employ relaxation in eigSUMR to calculate
eigenvectors to a high accuracy

• We can, of course, decrease the bound after each restart of
the inverter – but this doesn’t help so much in practice

• The SUMR q vectors quickly lose othogonolity when the
overlap operator is calculated to a low accuracy

• If the SUMR vectors are not orthogonal, we need to project
out the eigenvectors

vj → vj − vi(vi, vj)

vDj → vDj − vDi (vi, vj)

• We can quickly lose accuracy on vD if there are near duplicate
eigenvectors

• Need to continually check the accuracy of vD and be prepared
to recalculate it
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• The gain from deflation:
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• All plots on an 83 × 32 dynamical overlap ensemble, lattice
spacing ∼ 0.12 fm, quark mass µ = 0.03, mπ ∼ 460 MeV
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• The number of Wilson calls needed to calculate the
eigenvectors:
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• The number of SUMR iterations needed to calculate the
eigenvectors:
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• The number of CG iterations needed to calculate the
eigenvectors:
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• The accuracy of the 29th V D:
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• The residuals compared to number of Arnoldi iterations
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• Note that the convergence of the eigenvectors slows down
dramatically after a certain residual

• EigSUMR/Unitary Lanczos are good for low accuracy
eigenvectors; bad for high accuracy eigenvectors.
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• The residual for the relaxed and unrelaxed unitary
Lanczos routines compared to number of Wilson calls
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Jacobi Davidson

• Suppose we have a guess of the lowest eigenvalue of a matrix
A, u.

• We define the Ritz estimate of the eigenvalue, λ and the
residual, r as

λ =
(u, Au)

(u,u)
r =Au− λu.

• The true eigenvalue λ∗ and eigenvector u∗ satisfy the
eigenvalue equation,

Au∗ = λ∗u∗.

• We write

u∗ = u+ s,
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• s is a small correction orthogonal to u.

(A− λ′)(u+ s) = (λ∗ − λ′)(u+ s),

or

(A− λ′)s = −r+ (λ∗ − λ′)u+ (λ∗ − λ′)s,

where λ′ is any real number.
• We set λ′ to the best estimate available for λ∗
• Neglect terms of O(s2).
• Projecting into the subspace orthogonal to u.

(1− uu
†)(A− λ′)(1− uu

†)s = −r+O(s2).

• This gives us our approximation to s,

s ∼ − 1

(1− uu†)(A− λ)(1− uu†)
r.
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• We now construct an orthonormal basis of vectors V =
{v1,v2,v3, . . .}, and find V A = {vA

1
,vA

2
,vA

3
, . . .} = AV .

• We can obtain an improved estimate of the eigenvectors by
diagonalising Eij = (vAi , vj).

• By setting v1 = u and then v2 = s, we can obtain the best
estimate of the eigenvector in the subspace of u and s.

• We repeat this process, until we have an accurate enough
estimate of the eigenvector

• As long as we start close enough to the eigenvalue, it converges
rapidly

• To expand this method for multiple eigenvectors, we use a
subspace orthogonal to the eigenvectors already calculated
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• This method puts the bulk of the work into inversions

• For overlap fermions, we no how to do an inversion efficiently

• We can calculate more low accuracy eigenvectors we need,
and build up an eigenvalue preconditioner

• For degenerate eigenvalues (zero modes), we need to expand
the projector (1 − uu

†) over our current estimate of the
zero-mode subspace.

• The non-zero eigenvectors come in pairs, so by calculating ψi,
then ψi+1 ∼ (1− ψiψ

†
i )γ5ψi

• We need 3-4 inversions per eigenvector if we start from an
accuracy ∼ 10−3.

• Jacobi-Davidson works well if we have a small number of
eigenvectors calculated to a reasonable precision

• We require a reasonable initial guess to the eigenvectors, both
for the deflation and to have a good starting (λ, u)
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Zolotarev eigenvectors

• Basic idea: create a vector b =
∑

iψi, where ψi are our best
guesses of the eigenvectors

• Apply a step function R = 1
2(1 − sign(A − λ0)sign(A + λ0))

to project b into the desired eigenvector subspace

• λ0 lies between the largest eigenvalue we want to calculate to
a high accuracy and the largest low accuracy eigenvector we
possess

• Then use a Lanczos procedure to extract the wanted
eigenvectors from b′ = Rb

• In principle, we can use one set of inversions (on the same
input vector) to calculate as many eigenvalues as we need.

• In practice, not as simple as this.
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• We can see that (b′ =
∑

iψi + δ)

(

F1(A)b′ F2(A)b′ F3(A)b′ F4(A)b′
)

−
(

F1(A)δ F2(A)δ F3(A)δ F4(A)δ
)

=

(

ψ1 ψ2 ψ3 ψ4
)









F1(λ1) F2(λ1) F3(λ1) F4(λ1)
F1(λ2) F2(λ2) F3(λ2) F4(λ2)
F1(λ3) F2(λ3) F3(λ3) F3(λ3)
F1(λ4) F2(λ4) F3(λ4) F4(λ4)









(B −∆) = ΨΛ

• Fi are arbitrary polynomial functions

• These need to be tuned so we use the smallest number of
calls to the overlap operator to achieve ‖∆Λ−1‖ < ǫ

• We know (approximately) what the leading contributions to
∆ , and we know what Λ is
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• Choose Fi = cin(A/λ∗)
n, for n = 1, 2, . . . N

• Find the coefficients cin, λ∗ and N which minimise
8(‖∆Λ−1‖)3 +N

• Then use those functions to efficiently extract the eigenvectors
from b′

• To avoid degeneracies, we used the operator

A =
1

2
(1± γ5)±

1

2
(1± γ5)sign(K)

1

2
(1± γ5)

• This gives one of each eigenvector pair; we can easily
reconstruct the second member of the pair
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• There are difficulties (not yet fully resolved)

• Rounding errors limit the accuracy of the eigenvectors we can
achieve

• Rounding errors also limit the number of F vectors we can
usefully use

• The matrix sign function sign(A ± λ0) can be approximated
to a low but good enough accuracy by a Zolotarev rational
approximation.

• We can use a multishift solver for the largest shifts, and switch
to a deflated preconditioned eigCG inversion for the smaller
shifts

• We require fewer inversions than the number of eigenvalues
calculated each time

• In principle, this should beat Jacobi-Davidson to get the
eigenvectors out to a moderate accuracy

• Finally, we can use Jacobi-Davidson to quickly polish the
eigenvectors to a high accuracy if necessary.
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• Number of Wilson calls for first n eigenvectors to converge to
10−9 precision

• N additional low accuracy eigenvectors.

n N Arnoldi Jacobi-Davidson Zolotarev
20 30 - 4.0× 107 4.6× 107

• These results are not final; both Jacobi-Davidson and
Zolotarev can be improved

• We started in each case from eigenvectors with residuals
between 10−6 and 10−2.
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Conclusions

• We have calculated bounds for the accuracy of the overlap
operator required for a Arnoldi/SUMR eigenvalue routine to
converge

• We need to use a high accuracy matrix sign for the entire
Arnoldi calculation

• The convergence of the Arnoldi routine slows down
considerably after a certain accuracy is reached

• The Jacobi-Davidson and Zolotarev routines can calculate
eigenvectors to a high accuracy reasonably quickly using a low
accuracy Dirac operator

• The Jacobi-Davidson routine currently wins on our test lattices

• We still have further optimisations to make, especially for the
Zolotarev routine

• The Zolotarev routine seems to be particular sensitive to
floating point errors, a problem we need to resolve
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