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outline	

•  Motivation/Application 

o  CFTs and Radial Lattice Quantization 

•  Brief Background 
o  Naïve discretization; Regge calculus 

•  Sphere-like Lattices 
o  Refined cube 
o  Refined icosahedron 
o  Graph construction; building the lattice action 

•  Convergence of the Free Scalar Spectrum 
o  On the refined cube 
o  On the refined icosahedron 

•  Future Work 



motivation	

•  Want to study conformal QFTs on the lattice 
•  Can map time onto radius of sphere, 
•  Spatial degrees of freedom are mapped onto 

spherical shell 
•  Problem becomes solving a Euclidean QFT on a 

sphere 
•  Task: 

o  Find best way to discretize sphere (find best “graph”) 
o  Need to take curvature into account (need some basic gravity theory) 

•  Goal for this talk: 
o  Examine convergence of spectrum of discretized classical field operator 

to continuum spectrum for different graphs 

t→ log(r)



going  from  continuum  to  la1ice  action	


•  Naïve discretization: 
o  Not obvious how to do this on a non-toroidal lattice 
o  Need to go from sum over μ to a sum over nearest neighbors 
o  Nearest neighbor configurations usually vary from site to site 
 

∇µϕ(x)→
1
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a  general  approach  to  discrete  curved  spaces	


•  “Regge Calculus” 
o  Simplicial gravity 
o  Coordinate free 
o  All information contained in 

connectivity of graph and 
invariant lengths 

o  Theory is defined without 
reference to embedding 
space 

o  The same graph can take on 
many appearances in 
embedding space) 

•  Basketball can be inflated 
or flat (caved in) 
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Regge  calc.  ctd.	


•  Task: discretize action of scalar field theory in 
curved space 

 
•  Regge calculus tells us to make the following 

replacements 

•  μ runs over possible directions one can move away 
from a vertex within a given triangle 
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•  Arrive at lattice action: 

•        can be expressed in terms of invariant lengths 

o  “Voronoi dual area” 
o  Usually varies from link to link except in special cases 

o  Think of as“weight” of link 
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Regge  calc.  ctd.	
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A  note  on  FEM	


•  If one defines a linear 
interpolation of the field over 
each triangle and uses it to 
compute the finite element 
action, one arrives at the same 
answer as Regge calculus  
o  Again, each link is weighted by the 

corresponding Vononoi dual area 

o  Regge calculus and linear FEM are the 
same thing 
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Spherical  la1ices	


•  Refined cube 
o  Construction 
o  Pros/Cons 
o  Construction of discrete field op  

•  Refined Icosahedron 
o  Construction 
o  Pros/Cons 
o  Constructions of discrete field op 



Constructing  a  refined  cubic  mesh	


•  Draw a cubic grid of size (s+2)^3 
o  Edges always get cut off, so the final object has side length s 
o  Call s the “refinement” so s=1 is just a cube. 

•  Draw an inscribed sphere 
•  Throw out all points outside the spherical volume 
•  Of the points remaining, figure out which ones 

are on the surface 
o  For each small cube, check if its neighbor cube is completely 

contained in the spherical volume.  If not, then the face of the small 
cube in the direction of the missing neighbor cube is on the surface 



Refined  cubic  meshes	




Refined  cubic  meshes	


S=1	

S=3	


S=7	

S=31	




•  Pros 
o  All size lengths are equal 
o  All faces are the same (squares) 
o  Voronoi dual areas are all equal 

•  Regge calculus action simplifies greatly 
(next slide) 

o  Curvature at a vertex determined entirely 
by number of neighbors 

o  We know the embedding space, so it’s 
easy to define a global coordinate system 
for spinor/vector fields (future work) 

•  Cons 
o  Vertices do not lie on sphere 
o  Seems to converge more slowly to 

continuum (more on this soon) 

 

Refined  cubic  meshes:  pros/cons	




Note  on  Laplace  operator  on  refined  cube	

•  Voronoi areas and edge lengths are the same for all 

links, so the Regge calc action becomes 

•  This is the same as the naively discretized action 
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Constructing  refined  icosahedron	

•  Easy to visualize by mapping onto a flat graph 

o  The flat graph just gives the connectivity 
•  Notice, on icosahedron triangles are equilateral and on flat graph they are 

isosceles.  Flat graph is warped. 
o  Edges of same color are the same edge on the icosahedron 
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Constructing  refined  icosahedron	

•  To refine the graph, divide up each triangle as 

shown below (refinement s=3) 

 
•  On icosahedron  
(equilateral triangles), looks like: 
 



Constructing  refined  icosahedron	

•  So far we’ve just made a more highly discretized 

icosahedron.  It is not yet spherical.   
•  To make it approach the sphere, stereographically 

project points onto sphere  



•  Pros 
o  Largest discrete rotation group built in 
o  Triangular faces à simlicial mesh 

•  Easy to apply Regge calc 
o  Can construct without referring to 

embedding space 

•  Cons 
o  Edge lengths not equal 
o  Shapes of faces vary 
o  Voronoi (dual) areas are not equal  

 

Refined  icosahedron:  pros/cons	
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Convergence  of  discrete  laplacian  spectrum	




•  Convergence of the mean at each level L.  Expect: 

•  Convergence of standard error in the mean 

Convergence  of  discrete  laplacian  spectrum	


λ = λth +
a(λ)
s2

δλ =
b(λ)
s2

λth = L(L +1)



Refined  cube.    L=3	


n = 2.06 n = 0.56



Refined  cube.    L=4	


n =1.95 n = 0.38



Why  aren’t  the  standard  errors  falling  
off  like  1/s^2?	


•  Voronoi dual areas for LINKS are equal, but the SITES 
still “own” uneven amounts of the surface 

•  Need to solve generalized eigenvalue problem 
 
 

•  Options for vertex weights 
o  Voronoi dual area 
o  “1/3 area rule” 

Οxyϕ y = wyϕ y



Refined  icosahedron.    L=3	


n =1.98 n =1.90



Refined  icosahedron.    L=4	


n =1.98 n =1.83



Refined  icosahedron.    L=5	


n =1.97 n =1.75



Refined  icosahedron.    L=6	


n =1.97 n =1.83
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