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QCD

e Quarks and Gluons are ‘fields’ in space- ovral hopossle "/ef‘”‘”g e theary
time (Minkowski Space) — j
(0) = % / DA DY Dy O ¢ SAD)
. . \
e QCD Is defined by the Action (S) over the \
fields obeorvable (6g: parlio mass) & conorete set of ilds
e Action enumerates potential interactions ) e
S = [ do dy ()M (A, 2)b ()
- quark-gluon, gluon-gluon etc.
quark
1 3 gluon
e Observables can be computed through - [ & @G . ‘
Path Integrals over the fields. 4 gluon
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Moving to the Lattice

e Replace “continuum” space time by 4D Lattice

. . . . . (0) = z / DA Dy Dip O e SA4Y)
e Discretize quark fields onto lattice sites <

e Discretize gluon fields onto lattice links as SU(3) matrices
- QOCD local gauge symmetry: different color bases on each site \7
- 3x3 matrices on links act as “parallel transporters” along links
- rotate color basis at one site into that on another site.

e |n the action:
- use finite differences for derivatives

- ‘imaginary’ time (t=it)

e Functional integrals become ‘regular’ integrals

’ -
— ey

e A configuration is a state of ‘gluon’ fields 0=z

all links all sites
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Gauge Actions

e Basic Wilson Plaguette Action __ b Z Z Re Tr P, (x)
e as a->0 we have: r pu<v

} S%/dll:(:Fa’ VE ()

e (Can further improve Sy by adding
e.g. rectangle term:
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Fermions & Pseudo-Fermions

e Fermions are Grassmann )
Numbers z_ / DU D Dip e~ M OIMW)6=5,(0)

\ 4

- but can do the Gaussian Integral

e (Gives a determinant weight to
the partition function

- but determinants are nasty to

Z = / DU det (MTM) e s(U)

evaluate so
e Bosonize the determinant ‘
- write as an integral over ‘pseudo
fermion’ (boson) fields R TEY S -1,
| | | zZ = | DU Dot D e~ (MTM) " 6=54(U)
- NB: Now fermion matrlxlappears

as an inverse: (M'M)
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More Fermion Nastyness

e Naive fermion discretization leads to massless
free field propagator

Gp) = = 3 yusin (pua)

e Poles at p=0, p=1v/a in each dimension

SR

e Correspond to 2 species of fermion per 0
dimension

e Fermion doubling problem

Ultra-locality
Chiral Symmetry

- one cannot simultaneously have all the following: No Doublers
Still look like a fermion prop

e Nielsen-Ninomiya No Go Theorem:
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Solutions...

e Wilson-like Fermions:
- give doubler modes mass proportional to 1/a
- doublers decouple in continuum limit
- explicitly break Chiral symmetry

- discretization errors of O(a) for naive Wilson Fermions I x 1
- Clover term can remove O(a) errors with appropriate Cgy \
e Staggered Fermions: 0 T p
- distribute spin components to corners of a hypercube ‘!
- reduce 16 flavors (in 4D) to 4 flavors (tastes?)
- take the square root to get 2 flavors
e this was the source of much controversy Details about Staggered
- taste symmetry breaking fermion implementation by

e reduce this through “improvement” with fat links (AsqTAD, HiSQ) Ruizi Li on Frlday

- remnant U(1) “Chiral Symmetry”, O(a?) discretization errors
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Solutions

e Overlap Fermions: vsD + D5 = DysD Doy = 1+ ys5gn(vsDw (—My))

- define a lattice version of Chiral symmetry

through Ginsparg Wilson relation 1T Ve T
- Overap fermion is a solution of GW relation [T o mppron a2 '
_ _ . Z 0 tanh approx - Ls=16 ! —
- Involves a matrix sgn function (Talk by — zolotarev approx - Ls =16
- tanh approx - Ls=20 s
Frommer) tanh approx - Ls=24
-1 | I E— 1 | | | | | | | |
. " -14 -12 -1 -08 06 -04 -02 O 02 04 06 08 1 12 14
e Domain Wall and 5D fermions :
- ‘physical interpretation’ - 4D chiral modes Wi R !
bound to walls in 5D ! il |
- Or... acunning 5D way of inverting a 4D
matrix Sign Function.
e Both Overlap and DWF have O(a?) ]
discretization errors 0 Le-|
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Observables

e Lattice QCD Observables are “correlation functions” G eson: 6.0,
| 8 < >e e
e E.g. For mesons (quark-antiquark pairings): e (a.k.a pion)
. Do - . = j B Baryon: e.g.

C(p,t) =y €% Tr I G'(#,10,0) I G(&,1;0,0) ~———  prownor

neutron

e.g. p — 2m

(G is the quark propagator defined as: @ oo ooy

G(z,y) = M, ,S(z)

e M is the Fermion matrix > < 2 meson in to
2 meson out:
e Computing G involves solving a system of linear &g. 2T — am

equations (Solvers)
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LQCD Calculation Workflow

auge Conflguratlons , Propagators, Correlation Functions - Mt 2

B ‘!‘. L H1H
S = alisy

di

Physics
Result

Gauge Generation Analysis Phase 1 Analysis Phase 2

e (Gauge Generation: Capability Computing on Leadership Facilities
- configurations generated in sequence using Markov Chain Monte Carlo technique
- focus the power of leadership computing onto single task exploiting data parallelism
e Analysis: Capacity computing, cost effective on Clusters

- task parallelize over gauge configurations in addition to data parallelism
- can use clusters, but also LCFs in throughput (ensemble) mode.
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Evaluating Path Integrals: Monte Carlo

e On a lattice we have 4xVolume links.
- €.g. 323x256 Lattice: ~33.6M Links

e (Carrying out a 4V dimensional integral directly is unfeasible
e Turn to Monte-Carlo methods

1 _ 1
)= / [[ w05 —o=— 3 ow) PO
all links configuration 100?
* Recipe: A =

- Generate Configurations: U

- Evaluate the Observable on each configuration
- Form the “ensemble average” - which is the approximation to the Path Integral
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Evaluating Path Integrals: Monte Carlo

e On a lattice we have 4xVolume links.
- €.g. 323x256 Lattice: ~33.6M Links

e (Carrying out a 4V dimensional integral directly is unfeasible

e Turnto Monte _ - »
Problem: Since equilibrium probability

B i/ | IS sharply peaked, random sampling can
. pick samples that are not very |mportant
and contribute little to the average

® Recipe:
- Generate Configurations: U

- Evaluate the Observable on each configuration
- Form the “ensemble average” - which is the approximation to the Path Integral
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Importance Sampling

® Pick Configuration ‘U’ with probability P(U)
® Ensemble average then becomes a ‘regular average’

1

(0) =~ [ avi 0e Y — 0=

all links

e E.g.: Metropolis Algorithm
- Start from some initial configuration U

1
~ EN: OU)

o(0)

- Pick trial config U’ from U reversibly: ie Pc(U—U")=P(U —U)

- Accept with Metropolis probability

PU" U = min [ 1,
( A ) — 1nin ) €_S(U)

- |f we reject, next config is U again
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Global Updating

e Metropolis Algorithm would proceed link by link
e For each link one would need to evaluate the quark part of the action

Sy =o¢t (MIM) ™ ¢ = (| X)
e where
(MTM) X = ¢

e and again, M is the fermion matrix
o With 4V links this Is prohibitive and so one needs a global update method
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Hybrid Monte Carlo

e Big Irick: Update all links at once using Molecular Dynamics
- Treat each link as ‘canonical coordinate’
- Assign to each link a ‘canonical momntum’ in the lie algebra su(3)

e (Construct a fictitious Hamiltonian

1 2
H:§lz;p S(U)

e Simulate Hamiltonian System with partition function:

Z = /DU Dp e = /DU e_S/Dp ™7 Liinks P = C/DUe—SW)

e Momenta have gaussian distribution: easy to generate from heatbath
* |ntegral over momenta produce a constant, which will cancel in the path integral
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Hybrid Monte Carlo (HMC)

1. Refresh momenta from Gaussian Heatbath
- generate (U,p) from (U,polq) Hypersurface of Constant H

2. Compute H = H(U,p) ¢
U,, /
3. Perform Molecular Dynamics trajectory fw (U p)
- generate (U',p’) (U,p) ®
Momentum refreshmek

P — mln (17 e_H(Ulap/)_l_H(va)) (Uapold

- MD must be reversible and ‘area preserving’
4. Compute H = H(U’,p’)
5. Accept with Metropolis probability

6. If rejected new state is (U,p)
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e Acceptance Rate goes as:

(Puce) = ente | (/21

HMC Accept Rate

Figure from: “Improving dynamical lattice QCD

simulations through integrator tuning, using Poisson Brackets

3

e and < AHZ? > depends on the integration scheme. For n-
th order integrator over a unit length trajectory:

(AH) ~ (AH?) o< V1"

* |n general:

- cost ~number of steps ~1 /0T

- tuning: allow increased step size, without lowering acceptance
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and a force-gradient Integrator”, M. A. Clark,

B. Joo, A.D. Kennedy, P.J. Silva
Phys Rev.D84,071502
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(b)Acceptance rate as a function of d7, with
A = 0.18.




MD Integrators

e MD Integrators must be

- reversible Leapfrog:
- area (phase space measure) preserving

3 step
2nd order

e Can’t use some sophisticated ODE
iIntegrators such as Runge-Kutta etc.

e Can use symplectic integrators

- composed of symplectic update pieces

- gauge update: 0T

0T T
5 P

- momentum update: e Omelyan:
o Examples: 2nd order Leap-Frog, etc.
e Some have tunable parameters e.g. A oANOTQ LT P, (1-20)67Q
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HMC With Fermions

* Fermions have pseudofermion action: S = gb‘L (MTM) B ¢

e Can draw pseudofermions from Heat Bath
- write: Sf — 77T77

- then: ¢ — M]Ln

e \We draw new pseudofermions at the start
of each trajectory to sample the integral: / D¢TD¢

e We typically keep pseudofermions fixed
along a trajectory.
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MD Forces

e Momentum Update: e’TP - p(7+07) — p(1) + OTF
e For 2 Flavor Quark Action:

1 1

F=—¢t (MM)" MM+ MN|(MM) ™ ¢

e Need to evaluate:
(MTM)X = ¢
e Here again we need a solver but;:
- System is manifestly Hermitian and Positive definite

- Common to use two step solve: MTY = ¢ followed by M X =Y (reduced condition number)

- M will change as we perform the MD gauge field update, long set-up times for solver may not
be as easily amortized as for propagators.
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Multiple Time Scales

e Sexton & Weingarten introduced a way to have

multiple time scales in the MD

e Splitactionas S=S1+ S 0T

(2)_5_T]3_ ~ 0T 1 5t p
U —e2 "2 |U Pl,N e 2" 2

A 6 -
5t 5 Py o5 P

e Here, P2 updates momenta with the Force from S»
with steps of length dt w0 150

e And the U is a full update with S1taking N steps of 0T
length dt/N N :
=2 >
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Using Multiple Time Scales

e Action contains several pieces: 5 /\Ekm‘x/\
T

- Gauge Action for gluons 1
- Light quark action

- Strange quark action
e These all have different sized Forces

* Heuristic Tuning | F3]|max

- want to run at largest dt, for which integrator is

0
stable "
- for smaller forces this will be a larger dt
- for larger forces it will be a smaller dt

- qr her pl with similar sized forc N
group together pieces similar sized forces and 071 || F1 || max ~ ~ 073 || F3]|max
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Fermion Determinant Splitting

e Hasenbusch Trick (Hasenbusch) det(MTM)

det(MTM) = : det (M M;)
- introduce auxiliary M+ similar to M det (M M)
- get two determinents simulate with two p.f.-s
- ratio term “close to” identity: small forces, long steps My (M™M )_1 M ~1+6M

= run cancellation terms on different time scale.

® mass preconditioning (Jansen, Urbach, Shindler,
Wenger)

- cancellation term heavier than original 2 flavor term N
det(MTM) = | [ det(MTar)" /N
1=1

e Multi-pseudofermion Trick (Clark, Kennedy)

- a pseudofermion field for each N-th root of the det. N
. . . . t t —1 t ; —1/N
- N-th root typically implemented with Rational approx. o' (M'M) "¢ — Z@; (MTM) i
1=1
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Shadow Hamiltonians in LQCD

e (Clark, Kennedy, Silva, Joo. Also, for DWF: H. Yin, R. D. Mawhinney

e Error in Symplectic Update can be computed using Baker Campbell Haussdorff
formula:

e with
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Shadow Hamiltonians

(6)\2—6)\+1 1—6)\

H = H ALEANPRTN Y (P,{Q P}}) 0(57

e H is the Hamiltonian function
e {Q{Q,P}} and {P{Q,P}} are Poisson Brackets (analogues to the commutators)
e H’is the “Shadow Hamiltonian”
e The Shadow Hamiltonian is preserved EXACTLY by the integrator
e NOo step-size error!!
e |f one could measure the Poisson brackets one could
e optimize A to minimize o013 term
e construct a higher order O(dT1°) “Force Gradient Integrator”,
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Shadow Hamiltonian Examples

Leapfrog Integrator Force Gradient Integrator
V=4x4x4x4, Wilson Gauge Action, =5.7 V=4x4x4x4, Wilson Gauge, beta=5.7 (isotropic)
0 | | | | | | | '2 | | | | | | | |
D
| | — X=dH: Regression line: Gradient = 4.04
-1 . — X=dH, . :Regression line: Gradient = 6.03
4
)y - ]
g B —— X =dH: Regresion Gradient = 2.07 - g
%09 — X=dH, . :Regression Gradient =4.07 %E 6—
gl B 8
S+ —
N
-6 — —
g . | . | . | | 10 . | . | . | . | | |
-3 2.5 -2 -1.5 -1 -2 -1.8 -1.6 -14 -1.2 -1
log,, ( oT) log, ,(db)
Leapfrog: O(613) per step, O(d14) over unit trajectory, Leapfrog: O(01°) per step, O(d14) over unit trajectory,
Shadow: O(871°) per step, O(d1+) over unit trajectory Shadow: O(8717) per step, O(81°) over unit trajectory
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Analysis Pipeline

e Two main components Specify Diagrams S—— /i > <
- propagator calculations (solver) = N
- contraction calculations Contract
. . . ontrac
e (Contractions use dense matrix mutliply Sreonpeargiopr\g Propagators
- matrix dimension is O(100) (# sources)
e Many solves needed on single
configuration: q .
9 | | Solver Contractions
- #spin x #timeslice x #source x #quarks <
~—

e Typical Example

Solution vectors (large)
Generalized Propagators (small)
/O can be significant

- 4 spins, 256 timeslices, 386 source vectors and
light + strange quarks

- 790,528 individual solves per configuration

- Even more for larger lattices, more complex

. Correlation Functions
diagrams
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Solvers

e Traditionally we solve the Linear Systems with

. . i an Tl G
iterative Krylov Subspace solvers (#0 = ¢ 1s an Initial Guess)

1. Compute 7o = x — MTMaoo, po = 70
®
These can 2. For j = 0,1,

- work as black boxes 3 o = T35
7 (Mpj, Mpj)

... until convergence:

- typically need only L1 BLAS and MV operations

4. 9j41 = @; + a;p;

- typical candidates: Conjugate Gradients, BiCGStab 5. rir = 1y — o (MTM) p,
e (Convergence depends on condition number of M 6. 5, — <rj<+1,rj>+1>
* As quark mass approaches the physical mass, M 7 i :ml B,

becomes more and more ill conditioned 8 End For
e (Critical Slowing Down in the Solver.
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Domain Decomposition Preconditioner

Use a block-diagonal operator as a ‘preconditioner’

T In the solver
_ ""--;,r'i':"f;;: - inner-outer scheme

- outer scheme needs to be ‘flexible’ (FGMRES,GCR)
Arrange to spend most time in the preconditioner.

block diagonal operator is a ‘wavelength filter’
- reduces errors of “short” wavelength modes

-:*‘-;__1,‘. - outer scheme still needs to deal with long wavelength
N modes (e.g. w. deflation — Frommer et. al)
. Very suitable for architectures where

communication is a bottleneck (e.g. GPU, Xeon Phi)

e Suitable as a smoother for Multi-Grid (talk later on
by Rottmann)
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 QUDA Solver performance on Titan 40—

- Cray XK7 system H0or
- 1 NVIDIA K20X GPU per node >0 G- BICGStab: 72°x256
. 300 F-E DD+GCR: 72°x256 | -
- Gemini Interconnect . 561 BICGStab: 96%%056
e The DD+GCR solver does %222: “~* DD+GOR: 96 x256
considerably better than the " ol //
standard BiCGStab o —
i o
o But even DD+GCR is affected by ol o0o—6 © '

strong scaling effects

.Ieffegon Lab
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Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

0 - I I I

B Joo, F Wlnter (JLab), M Clark (NVIDIA)
I I I

0 512 1024 1536 2048

2560 3072 3584 4096 4608

Titan Nodes (GPUs)
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Algebraic Multi Grid

Image From: http://computation.linl.gov/casc/sc2001_fliers/SLS/SLS01.html

e (Critical Slowing down is caused by ‘near zero’
modes of M ) -

e Multi-Grid method
- separate (project) low lying and high lying modes

- solve for high lying modes with “smoother” ’
- Solve for low modes on coarse grid with reduced 1000 ——————— douipreciémm S
- Gauge field is ‘stochastic’, so no geometric smoothess on =
low modes => algebraic multigrid 2 oo
- Setting up restriction/prolongation operators is costly
- Easily amortized in Analysis with O(100,000) solves A |
e Several more MG talks to follow (e.g. Brannick,
Rottmann) o e Rev. Let, 1052018022010~ o
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Summary

e Fermions are troublesome
- several approaches (Wilson, TM, Staggered, DWF, Overlap etc) scarifice different desiderata
e Dealing with fermions is a predominant cost of HMC simulations

- split fermion determinants, multiple time-scales etc

e Shadow Hamiltonian Techniques promise
- better tuning
- And/Or cheaper 4th order “Force Gradient” MD integrators
e Always want better solvers:
- AMG Has been highly successful for propagator calculations with Wilson Fermions (talks by Brannick, Rottmann)
- See follow on talk by Kahl for details and applications to overlap fermions

- Domain Decomposed preconditioners have shown themselves to be scalable for Wilson Fermions
- Next frontier is to see if AMG can be applied to HMC (see talk by Lin)
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