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QCD
• Quarks and Gluons are ‘fields’ in space-

time (Minkowski Space)!
!

• QCD Is defined by the Action (S) over the 
fields!
!

• Action enumerates potential interactions!
- quark-gluon, gluon-gluon etc.!

!

• Observables can be computed through 
Path Integrals over the fields.

Expectation value of an  
observable (eg: particle mass)

“Functional Integral” 
over all the possible 
states of the fields

Value of observable on 
a concrete set of fields

The “action” defining the theory

quark

gluon

3  gluon

4  gluon

quark



Thomas Jefferson National Accelerator Facility

Moving to the Lattice
• Replace “continuum” space time by 4D Lattice!

• Discretize quark fields onto lattice sites!

• Discretize gluon fields onto lattice links as SU(3) matrices!
- QCD local gauge symmetry: different color bases on each site!

- 3x3 matrices on links act as “parallel transporters” along links!

- rotate color basis at one site into that on another site.!

• In the action: !
- use finite differences for derivatives!

- ‘imaginary’ time ( t ⇒ it )!

• Functional integrals become ‘regular’ integrals!

• A configuration is a state of ‘gluon’ fields
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Gauge Actions
• Basic Wilson Plaquette Action!

• as a -> 0 we have:!
!

-  !
!

• Can further improve Sg by adding  
e.g. rectangle term: μ

ν

x
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Thomas Jefferson National Accelerator Facility

Fermions & Pseudo-Fermions
• Fermions are Grassmann 

Numbers!
- but can do the Gaussian Integral!

• Gives a determinant weight to 
the partition function!

- but determinants are nasty to 
evaluate so!

• Bosonize the determinant!
- write as an integral over ‘pseudo 

fermion’ (boson) fields!

- NB: Now fermion matrix appears 
as an inverse: 

Z =
�
DU D�̄ D� e��̄M†(U)M(U)��Sg(U)

Z =
�
DU det

�
M†M

�
e�Sg(U)

Z =
�
DU D�† D� e��†(M†M)�1

��Sg(U)

�
M†M

��1
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More Fermion Nastyness
• Naive fermion discretization leads to massless 

free field propagator!
!

!

• Poles at p=0, p=π/a in each dimension!

• Correspond to 2 species of fermion per 
dimension!

• Fermion doubling problem!

• Nielsen-Ninomiya No Go Theorem:!
- one cannot simultaneously have all the following:

�

a
0

p

G(p) =
i

a

�

µ

�µ sin (pµa)

Ultra-locality 
Chiral Symmetry 

No Doublers 
Still look like a fermion prop
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Solutions…
• Wilson-like Fermions: !

- give doubler modes mass proportional to 1/a!

- doublers decouple in continuum limit!

- explicitly break Chiral symmetry!

- discretization errors of O(a) for naive Wilson Fermions!

- Clover term can remove O(a) errors with appropriate csw!

• Staggered Fermions: !
- distribute spin components to corners of a hypercube!

- reduce 16 flavors (in 4D) to 4 flavors (tastes?)!

- take the square root to get 2 flavors !

• this was the source of much controversy!

- taste  symmetry breaking!

• reduce this through “improvement” with fat links (AsqTAD, HiSQ) !

- remnant U(1) “Chiral Symmetry”, O(a2) discretization errors

�

a
0

p

� 1
a

Details about staggered  
fermion implementation by  

Ruizi Li on Friday
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Solutions
• Overlap Fermions:!
- define a lattice version of Chiral symmetry 

through Ginsparg Wilson relation!

- Overap fermion is a solution of GW relation!

- involves a matrix sgn function (Talk by 
Frommer)!

• Domain Wall and 5D fermions!
- ‘physical interpretation’ - 4D chiral modes 

bound to walls in 5D!

- or… a cunning 5D way of inverting a 4D 
matrix Sign Function.!

• Both Overlap and DWF have O(a2) 
discretization errors

�5D + D�5 = D�5D Dov = 1 + �5sgn(�5DW (�M0))
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Observables
• Lattice QCD Observables are “correlation functions”!

• E.g. For mesons (quark-antiquark pairings):!
!

!

!

• G is the quark propagator defined as:!
!

!

• M is the Fermion matrix!

• Computing G involves solving a system of linear 
equations  (Solvers)

Meson: e.g.   
 the π meson 
 (a.k.a pion)

Baryon: e.g.  
proton or 
neutron

Meson to 2 
meson decay: 
e.g. ρ → 2π

2 meson in to  
2 meson out: 
e.g. 2π → 2π

G

 G†
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LQCD Calculation Workflow

• Gauge Generation: Capability Computing on Leadership Facilities!
- configurations generated in sequence using Markov Chain Monte Carlo technique!

- focus the power of leadership computing onto single task exploiting data parallelism!

• Analysis: Capacity computing, cost effective on Clusters!
- task parallelize over gauge configurations in addition to data parallelism!

- can use clusters, but also LCFs in throughput (ensemble) mode.

Gauge Generation Analysis Phase 1 Analysis Phase 2 Physics 
Result

Gauge Configurations Propagators, Correlation Functions
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Evaluating Path Integrals: Monte Carlo
• On a lattice we have 4xVolume links.!
- e.g. 323x256 Lattice: ~33.6M Links !

• Carrying out a 4V dimensional integral directly is unfeasible!

• Turn to Monte-Carlo methods!
!

!

!

• Recipe: !
- Generate Configurations: U !

- Evaluate the Observable on each configuration!

- Form the “ensemble average” -  which is the approximation to the Path Integral
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Evaluating Path Integrals: Monte Carlo
• On a lattice we have 4xVolume links.!
- e.g. 323x256 Lattice: ~33.6M Links !

• Carrying out a 4V dimensional integral directly is unfeasible!

• Turn to Monte-Carlo methods!
!

!

!

• Recipe: !
- Generate Configurations: U !

- Evaluate the Observable on each configuration!

- Form the “ensemble average” -  which is the approximation to the Path Integral

Problem: Since equilibrium probability 
is sharply peaked, random sampling can  
pick samples that are not very important  

and contribute little to the average
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Importance Sampling
• Pick Configuration ‘U’ with probability P(U) 

• Ensemble average then becomes a ‘regular average’  
!

!

• E.g.: Metropolis Algorithm 
- Start from some initial configuration U 

- Pick trial config U’ from U reversibly: ie Pc(U→U’)=Pc(U’→U) 

- Accept with Metropolis probability 
!

!

- If we reject, next config is U again
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Global Updating
• Metropolis Algorithm would proceed link by link!

• For each link one would need to evaluate the  quark part of  the action!
!

!

• where!
!

!

• and again, M is the fermion matrix!

• With 4V links this is prohibitive and so one needs a global update method
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Hybrid Monte Carlo
• Big Trick: Update all links at once using Molecular Dynamics!
- Treat each link as ‘canonical coordinate’!

- Assign to each link a ‘canonical momntum’ in the lie algebra su(3)!

• Construct a fictitious Hamiltonian!
!

!

• Simulate Hamiltonian System with partition function:!
!

!

• Momenta have gaussian distribution: easy to generate from heatbath!

• Integral over momenta produce a constant, which will cancel in the path integral
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Hybrid Monte Carlo (HMC)
1. Refresh momenta from Gaussian Heatbath!

- generate (U,p) from (U,pold)!
2. Compute H = H(U,p)!
3. Perform Molecular Dynamics trajectory!

- generate (U’,p’)!

- MD must be reversible and ‘area preserving’!
4. Compute H’ = H(U’,p’)!
5. Accept with Metropolis probability!

!

!

6. If rejected new state is (U,p)

Hypersurface of Constant H

Momentum refreshment 

MD

(U, pold)

(U, p)

(U �, p�)
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HMC Accept Rate
• Acceptance Rate goes as:!

!

!

!

• and < ΔH2 > depends on the integration scheme. For n-
th order integrator over a unit length trajectory:!
!

!

• In general: !
- cost  ~ number of steps ~ 1 / δτ!

- tuning: allow increased step size, without lowering acceptance

�Pacc� = erfc

��
��H2�

8

�

��H� � ��H2� � V ��2n

2

(a)Acceptance rate as a function of λ, with
δτ = 0.1.

(b)Acceptance rate as a function of δτ , with
λ = 0.18.

FIG. 1. Comparison of measured acceptance rates and their predictions from average Poisson brackets.

accurate enough that their distribution is still close to
e−H . We can therefore estimate the acceptance rate from
Var(∆H)

Pacc = erfc

(√
1

8
⟨δH2⟩

)

= erfc

(√
1

4
Var(∆H)

)

(2)

The advantage of using Var(∆H) is that one only needs
to measure the Poisson brackets from equilibrated con-
figurations. We can thus express Pacc as a function of the
integrator parameters and find their optimal values that
maximize the acceptance rate.

As a simple test, we consider a HMC simulation of
two flavors of Wilson fermions at κ = 0.158 and Wilson
gauge action at β = 5.6 on an 84 lattice. We use a sin-
gle level PQPQP integrator and a unit trajectory length,
therefore we have two parameters to tune, namely λ and
the step size δτ . In Figure 1 we compare the acceptance
rates predicted by the formula above (red curve) with
numerical data taken from simulations at various values
of λ and δτ (black dots). The Poisson Bracket values
used for the predictions were measured at λ = 0.18 and
δτ = 0.1. In Figure 1(a) we have fixed δτ = 0.1 and we
leave λ as a free parameter; whereas in Figure 1(b) we
take λ = 0.18 and we plot Pacc as a function of the step
size.

The figures show good agreement between predicted
and measured acceptance rates, provided the step size
is not too big, otherwise BCH expansion breaks. We
now use eq. (2) to tune the MD integrator on a larger
volume. Ultimately, we are interested in reducing the
computational cost, which depends on the wall-clock time
spent computing the force terms on a unit of MD time as
well as the acceptance rate, and the autocorrelation time
for the observables. We neglect the autocorrelation time
in this discussion as they are not sensitive to the choice
of integrator parameters as long as the acceptance rate

is reasonable, and define our cost metric as

cost =
trajectory CPU time

Pacc τ
.

For a nested integrator the numerator of this cost func-
tion is a function of the number of steps at each level
times the CPU time required to compute the forces at
that level.

TUNING A REAL SIMULATION

Level i Force F time FG time

0 Hasenbusch (µ = 0 / µ = 0.057) 21.21 s 26.61 s

1 Hasenbusch (µ = 0.057 / µ = 0.25) 3.98 s 7.55 s

2 Wilson (µ = 0.25) 1.05 s 1.98 s

3 Gauge 0.075 s 0.142 s

TABLE I. Set-up used in the HMC simulation described in
this section, together with typical times spent on force com-
putation. For convenience times for the force gradient com-
putation are also shown here.

As an application of our tuning technology, we are go-
ing to consider a HMC simulation of a 243 × 32 lattice,
with two flavours of Wilson fermions with κ = 0.1580 and
β = 5.6. As in [6], we use a nested PQPQP integrator
scheme, with the inclusion of two Hasenbusch fields with
twisted mass fermions as “preconditioners”. In [6], each
nested level of the integrator has one force term, and the
free parameter of the PQPQP integrator has been set to
λ = 1/6 at all levels. In table I, for each level i (note
that 0 is the outermost level), we show the type of force
and its parameters, and mean values of the time spent
on force and force gradient computation. All times refer

Figure from: “Improving dynamical lattice QCD  
simulations through integrator tuning, using Poisson Brackets 

and a force-gradient Integrator”, M. A. Clark, 
B. Joo, A.D. Kennedy, P.J. Silva 

Phys Rev.D84,071502
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MD Integrators
• MD Integrators must be !
- reversible!

- area (phase space measure) preserving!

• Can’t use some sophisticated ODE 
integrators such as Runge-Kutta etc.!

• Can use symplectic integrators!
- composed of symplectic update pieces!

- gauge update:!

- momentum update:!

• Examples: 2nd order Leap-Frog, etc.!

• Some have tunable parameters e.g. λ

Leapfrog:

e���Q̂e
��
2 P̂ e(1�2�)��Q̂e

��
2 P̂ e���Q̂

Omelyan:

e
��
2 P̂ e

��
2 P̂

e��Q̂

e
��
2 P̂ e��Q̂e

��
2 P̂

3 step 
2nd order

5 step 
2nd ordere��Q̂

e
��
2 P̂
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HMC With Fermions
• Fermions have pseudofermion action:!

• Can draw pseudofermions from Heat Bath!
- write: !

!

- then: !
!

• We draw new pseudofermions at the start 
of each trajectory to sample the integral: !
!

• We typically keep pseudofermions fixed 
along a trajectory.

Sf = �† �
M†M

��1
�

Sf = �†�

� = M†�

�
D�†D�
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MD Forces
• Momentum Update: !

• For 2 Flavor Quark Action:   !
!

!

• Need to evaluate: !
!

• Here again we need a solver but:!
- System is manifestly Hermitian and Positive definite!

- Common to use two step solve:  M†Y = ɸ  followed by M X = Y    (reduced condition number)!

- M will change as we perform the MD gauge field update, long set-up times for solver may not 
be as easily amortized as for propagators. 

�
M†M

�
X = �

F = ��† �
M†M

��1
�
Ṁ†M + M†Ṁ

��
M†M

��1
�

e�� P̂ : p(� + ��)� p(�) + ��F
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Multiple Time Scales
• Sexton & Weingarten introduced a way to have 

multiple time scales in the MD!

• Split action as   S = S1 + S2!
!

!

!

• Here,  P2 updates momenta with the Force from S2 
with steps of length dt!

• And the U is a full update with S1 taking N steps of 
length dt/N

e
��
2 P̂ e

��
2 P̂

e��Q̂

� � + ��/2 � + ��

��

� � + ��/2 � + ��

e
��
2 P̂2 e

��
2 P̂2

e
��
2 Q̂ e

��
2 Q̂+

e
��
4 P̂1 e

��
4 P̂1 e

��
4 P̂1 e

��
4 P̂1

��

��

2
N = 2
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Using Multiple Time Scales
• Action contains several pieces:!
- Gauge Action for gluons!

- Light quark action!

- Strange quark action!

• These all have different sized Forces!

• Heuristic Tuning!
- want to run at largest dt, for which integrator is 

stable!

- for smaller forces this will be a larger dt!

- for larger forces it will be a smaller dt!

- group together pieces with similar sized forces and 

��3

||F3||max

��2

||F2||max

||F1||max

��1

��1 ||F1||max ��2 ||F2||max ��3 ||F3||max~ ~
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Fermion Determinant Splitting
• Hasenbusch Trick (Hasenbusch)!
- introduce auxiliary M1 similar to M!

- e.g. add small twist or slightly different mass!

- get two determinents simulate with two p.f.-s!

- ratio term “close to” identity: small forces, long steps!

- run cancellation terms on different time scale.!

• mass preconditioning (Jansen, Urbach, Shindler, 
Wenger)!

- cancellation term heavier than original 2 flavor term !

• Multi-pseudofermion Trick (Clark, Kennedy)!
- a pseudofermion field for each N-th root of the det.!

- N-th root typically implemented with Rational approx.

det(M†M) =
det(M†M)
det(M†

1M1)
det(M†

1M1)

�† �
M†M

��1
�� �†M1

�
M†M

��1
M†

1� + �†
1

�
M†

1M1

�
�1

M1

�
M†M

��1
M†

1 � 1 + �M

det(M†M) =
N�

i=1

det(M†M)1/N

�† �
M†M

��1
��

N�

i=1

�†
i

�
M†M

��1/N
�i
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Shadow Hamiltonians in LQCD
• Clark, Kennedy, Silva, Joo. Also, for DWF: H. Yin, R. D. Mawhinney!

• Error in Symplectic Update can be computed using Baker Campbell Haussdorff 
formula:!
!

!

• Using this we can show that the 3-step Omelyan integrator behaves as:!
!

!

• with 

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂]+ 1

12 ([Â,[Â,B̂]]�[B̂,[Â,B̂]])+h.o.t

e���Q̂e
��
2 P̂ e(1�2�)��Q̂e

��
2 P̂ e���Q̂ = eĤ���

Ĥ � = Ĥ +
�

6�2 � 6� + 1
12

[Q̂, [Q̂, P̂ ]] +
1� 6�

24
[P̂ , [Q̂, P̂ ]

�
��2 + O(��4)
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Shadow Hamiltonians
!

!

!

• H is the Hamiltonian function !

• {Q,{Q,P}}  and {P,{Q,P}} are Poisson Brackets (analogues to the commutators)!

• H’ is the “Shadow Hamiltonian” !

• The Shadow Hamiltonian is preserved EXACTLY by the integrator!

• No step-size error!!!

• If one could measure  the Poisson brackets one could!

• optimize λ to minimize δτ3 term!

• construct a higher order O(δτ5) “Force Gradient Integrator”,

H � = H +
�

6�2 � 6� + 1
12

{Q, {Q,P}} +
1� 6�

24
{P, {Q,P}}

�
��2 + O(��4)
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Shadow Hamiltonian Examples

-2 -1.8 -1.6 -1.4 -1.2 -1
log10(dt)
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lo
g 10

(X
)

X=dH: Regression line: Gradient = 4.04
X=dHShadow: Regression line: Gradient = 6.03

Force Gradient Integrator using Towers
V=4x4x4x4, Wilson Gauge, beta=5.7 (isotropic)

-3 -2.5 -2 -1.5 -1
log10 ( δτ)

-7

-6

-5

-4

-3

-2

-1

0

lo
g 10

(X
) X = dH:  Regresion Gradient = 2.07

X = dHShadow: Regression Gradient = 4.07

PQP Leapfrog Integrator
V=4x4x4x4, Wilson Gauge Action, β=5.7

Leapfrog Integrator Force Gradient Integrator

Leapfrog: O(δτ3) per step, O(δτ2) over unit trajectory, 
Shadow: O(δτ5) per step, O(δτ4) over unit trajectory

Leapfrog: O(δτ5) per step, O(δτ4) over unit trajectory, 
Shadow: O(δτ7) per step, O(δτ6) over unit trajectory
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Analysis Pipeline
• Two main components!

- propagator calculations (solver)!

- contraction calculations !

• Contractions use dense matrix mutliply!
- matrix dimension is O(100) (# sources)!

• Many solves needed on single 
configuration: !
- #spin x #timeslice x #source x #quarks!

• Typical Example!
- 4 spins, 256 timeslices, 386 source vectors and 

light + strange quarks!

- 790,528 individual solves per configuration!

- Even more for larger lattices, more complex 
diagrams

Specify Diagrams

Solver

Generate All 
Propagators

Contractions

Contract 
Propagators

Solution  vectors (large) 
Generalized Propagators  (small) 

I/O can be significant

Correlation Functions
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Solvers
• Traditionally we solve the Linear Systems with 

iterative Krylov Subspace solvers!

• These can !
- work as black boxes!

- typically need only L1 BLAS and MV operations!

- typical candidates: Conjugate Gradients, BiCGStab!

• Convergence depends on condition number of M!

• As quark mass approaches the physical mass, M 
becomes more and more ill conditioned !

• Critical Slowing Down in the Solver.
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Domain Decomposition Preconditioner
• Use a block-diagonal operator as a ‘preconditioner’ 

in the solver!
- inner-outer scheme!

- outer scheme needs to be ‘flexible’ (FGMRES,GCR)!

• Arrange to spend most time in the preconditioner.!

• block diagonal operator is a ‘wavelength filter’!
- reduces errors of “short” wavelength modes!

- outer scheme still needs to deal with long wavelength 
modes (e.g. w. deflation — Frommer et. al)!

• Very suitable for architectures where 
communication is a bottleneck (e.g. GPU, Xeon Phi)!

• Suitable as a smoother for Multi-Grid (talk later on 
by Rottmann)
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Solver Performance

• QUDA Solver performance on Titan!
- Cray XK7 system!

- 1 NVIDIA K20X GPU per node!

- Gemini Interconnect!

• The DD+GCR solver does 
considerably better than the 
standard BiCGStab!

• But even DD+GCR is affected by 
strong scaling effects

0 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUs)
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LO
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BiCGStab: 723x256
DD+GCR: 723x256
BiCGStab: 963x256
DD+GCR: 963x256

Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo,  F. Winter (JLab), M. Clark (NVIDIA)
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Algebraic Multi Grid
• Critical Slowing down is caused by ‘near zero’ 

modes of M!

• Multi-Grid method!
- separate (project) low lying and high lying modes!

- solve for high lying modes with “smoother”!

- solve for low modes on coarse grid with reduced 
dimensional operator !

- Gauge field is ‘stochastic’, so no geometric smoothess on 
low modes => algebraic multigrid!

- Setting up restriction/prolongation operators is costly!

- Easily amortized in Analysis with O(100,000) solves!

• Several more MG talks to follow (e.g. Brannick, 
Rottmann)
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double precision CGNR
mixed precision CGNR

double precision BiCGStab
mixed precision BiCGStab

mixed precision multigrid

10-12x speed up

Multi-Grid. figure from J. C. Osborn et. al.  PoS Lattice 2010:037,2010, R. Babich et. al. 
Phys. Rev. Lett, 105:201602,2010 

Image From: http://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html 
Credit: LLNL, CASC 

http://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html


Thomas Jefferson National Accelerator Facility

Summary 
• Fermions are troublesome!

- several approaches (Wilson, TM, Staggered, DWF, Overlap etc) scarifice different desiderata!

• Dealing with fermions is a predominant cost of HMC simulations!
- split fermion determinants, multiple time-scales etc!

• Shadow Hamiltonian Techniques promise !
- better tuning!

- And/Or cheaper 4th order “Force Gradient” MD integrators!

• Always want better solvers:!
- AMG Has been highly successful for propagator calculations with Wilson Fermions (talks by Brannick, Rottmann)!

- See follow on talk by Kahl for details and applications to overlap fermions!

- Domain Decomposed preconditioners have shown themselves to be scalable for Wilson Fermions!

- Next frontier is to see if AMG can be applied to HMC (see talk by Lin)


