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Motivation

Task: Find solution of DNϕ = η where

DN =(mN
0 −

m

2
)(1 + γ5 sign(

HW︷ ︸︸ ︷
γ5(DW −mN

0 )) +m

=(mN
0 −

m

2
)(1 + γ5(H

†
WHW )−

1
2HW ) +m

Challenges:

(i) Iteration counts of O(1,000) for DNϕ = η

(ii) Evaluating (H†WHW )−
1
2x is quite costly
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Accelerating the solution of DNϕ = η
Challenge (i): Number of iterations for DNϕ = η

Idea: Preconditioning with a “suitable” operator D̃

Use the concept of auxiliary space preconditioning to define D̃

I Use a similar (spectrally equivalent) operator that is easier to solve
as a preconditioner

I Examples
I Conforming for Nonconforming finite element discretizations
I Lower order for higher order discretizations
I Low chirality for high chirality discretization

Auxiliary space preconditioning of the Neuberger Overlap operator
Use the kernel operator of DN , i.e., the Wilson-Dirac operator DW

DND
−1
W ψ = η with ϕ = D−1

W ψ

I Computing D−1
W is done by DD-αAMG [arXiv:1303.1377]

I D−1
W is cheap, scalable and robust
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Why is DW a good preconditioner for DN?

Assuming normality of DW (i.e. D†WDW = DWD
†
W ) we find

Relation between low modes of DW and DN

Let λ be a small eigenvalue of DW , i.e., DWx = λx with |λ| small.
W.l.o.g. assume m = 0. Then

DNx = mN
0

(
1 + γ5 sign(γ5(DW −mN

0 ))
)
x

= mN
0

(
1 + γ5((DW −mN

0 )†(DW −mN
0 ))−

1
2

· (γ5(DW −mN
0 ))
)
x

= mN
0 x+mN

0 (λ−mN
0 )
(
(λ−mN

0 )(λ−mN
0 )
)− 1

2x

= mN
0

(
1 + sign(λ−mN

0 )
)
x
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Overlap construction – assuming normality of DW

DW

DW −mN
0γ5 sign(γ5(DW −mN

0 ))DN = (mN
0 − m

2 )(1 + γ5 sign(γ5(DW −mN
0 )) +m
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What does normality have to do with physics?

I The continuous Dirac operator D is chiral and γ5-symmetric

γ5D −Dγ5 and (γ5D)† = γ5D

I Chirality is equivalent to anti-hermiticity (1-normality)

γ5D +Dγ5 = 0⇔ D† = −D

I Ginsparg-Wilson relation is equivalent to (1, 1)-normality

γ5D −Dγ5 = aDγ5D ⇔ D† = −D(1− aD)−1

I Side note: Higher order Ginsparg-Wilson relations?
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Deviation from normality of non-chiral discretizations

Quality of preconditioner depends on normality?!

Measure for the deviation of normality

δN := ||D†D −DD†||F ,

where ||X||2F =
∑n
i,j=1 x

2
ij , X ∈ Cn×n.

Theorem

The deviation of normality of DW is given by

δN = 16
∑
x

∑
µ>ν

Re(tr(I −Qµ,νx )),

where Qµ,νx is the plaquette defined by

Qµ,νx = Uν(x)Uµ(x+ ν̂)UHν (x+ µ̂)UHµ (x) =
x

.

Deviation from normality proportional to the Wilson Gauge action!?
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Thick Links, smearing and normality
Wilson flow, Stout smearing and the deviation from normality

Anything that changes the gauge action, changes δN

The Wilson flow Vτ = {Vµ(x, τ) : x ∈ L, µ = 0, . . . , 3} is defined as the
solution of the initial value problem

∂

∂τ
Vµ(x, τ) = −{∂x,µSW(Vτ )}Vµ(x, τ) , Vµ(x, 0) = Uµ(x).

Given a gauge field U , stout smearing modifies the gauge links

Uµ(x)→ Ũµ(x) = eεZ
U
µ (x)Uµ(x)

where the parameter ε is a small positive number and

ZUµ (x) = −1

2
(Mµ(x)−MH

µ (x)) +
1

6
tr
(
Mµ(x)−MH

µ (x)
)
, where

Mµ(x) =
∑
ν 6=µ

Qµ,νx +Qµ,−νx .

Note the dependence of ZUµ (x) on local plaquettes associated with x.

K. Kahl et al., AMG Preconditioning for the Neuberger Overlap Operator 7/18



Preconditioning the Neuberger Overlap Operator Numerical Results Efficient evaluation of the inverse square root Summary & Outlook

Thick Links, smearing and normality
Wilson flow, Stout smearing and the deviation from normality

Wilson flow and stout smearing

Let Vτ be the solution of the Wilson flow. Then

(i) Vτ is unique for all V0 and all τ ∈ (−∞,∞) and
differentiable with respect to τ and V0.

(ii) The Wilson action SW (Vτ ) is monotonically decreasing as a
function of τ .

(iii) One step of Lie-Euler integration with step size ε for the
Wilson flow initial value problem, starting at τ = 0, gives the
approximation V ′ε = {V ′µ(x, ε)} for Vε with

V ′µ(x, ε) = eεZ
U
µ (x)Uµ(x),

with ZUµ (x) the stout smeared link variables.

For ε small enough, stout smearing monotonically decreases the gauge
action and thus the deviation from normality.
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Numerical illustration of Overlap preconditioning
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Scanning the Optimal Wilson Preconditioner Mass Shift mW
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I 324 lat, 3HEX smeared BMW-c cnfg (unpublished), mπ ≈ 350MeV,
1,024 processes

I overlap tol 10−8, Wilson tol 10−2, sign fct with explicit deflation
and relaxed tol

I optimal mW
0 ≈ 0.16
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Smearing Study
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I 324 lattice, 1,024 processes

I no smearing → ×5 speedup

I cost per iteration for preconditioned method only slightly higher

I preconditioner cost almost negligible
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Scaling with the Overlap Mass Shift
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I 324 lat, 3HEX smeared BMW-c cnfg

I cnfg generated at approx. ρ = 2−6 (mπ ≈ 350MeV)

I smaller masses → bigger gain
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Influence of the Preconditioner Accuracy
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I 324 lat, 3HEX smeared BMW-c cnfg

I tol = 10−2 optimal in terms of iteration count

I tol = 10−1 optimal in terms of solve time
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Solving the inverse square root
Challenge (ii): Evaluating (H†WHW )−

1
2 x

Good convergence without explicit calculation of low modes of HW ?

Idea: Use implicit low mode information via thick restarts.

With the Cauchy integral representation

f(A) = A−
1
2 =

∫
Γ

g(t)(tI −A)−1 dt

and a Lanczos decomposition of H†WHW we can compute the k-th error
propagator by numerical quadrature

e(k)(T ) = c

l∑
i=1

ρ(T, xi)
ωi

−β(1− xi)− T (1 + xi)
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Solving the inverse square root

Algorithm Quadrature based restarted Lanczos approximation
1: in: A, b, f , m, t
2: Compute Lanczos decomposition AV

(1)
m = V

(1)
m+1T

(1)
m+1,m

3: f
(1)
m := ||b||V (1)

m f(Tm,m)e1
4: for k = 2, 3, . . . do
5: Get eigenvalue decomp. of Tm,m and extract t smallest eigenvalues
6: Extend new search space by m Lanczos steps
7: Compute error h

(k)
m := e

(k−1)
m (T

(k)
m )et+1 by adaptive quadrature

8: f
(k)
m = f

(k−1)
m + ||b||V (k)

m h
(k)
m

9: end for

I Implicit deflation only operates on small tri-diagonal matrix

I C-MPI-Code available

I No numerical comparison yet
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Thick Restarts vs. Explicit Deflation
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I 324 lat, 3HEX smeared BMW-c cnfg, 1,024 cores

I GMRESR := FGMRES-64bit + GMRES-32bit

I GMRESR+DD-αAMG := FGMRES-64bit + FGMRES-32bit +
DD-αAMG
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Thick Restarts vs. Explicit Deflation
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explicit deflation

explicit deflation + 100 EVs via PARPACK

I 324 lat, no smearing, 1,024 cores

I one RHS: preconditioning + thick restarts

I many RHS: preconditioning + explicit deflation
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Summary & Outlook

Summary:

I Preconditioning overlap equation leads to fewer iterations for
the solution of DNϕ = η

I Preconditioner time almost negligible

I Efficiency of preconditioner improves
I when approaching normality
I for smaller masses

Outlook:

I Incoorporate solver into production codes of collaborators

I Further optimization of preconditioner

I Overall performance improvement of the method
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