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Outline

• Some basics (telling you things you know in my notation) 

• Fitting correlation functions 

• “Constrained curve fitting” 

• Two-stage constrained fitting 

• Model uncertainty and marginalization 

• A Bayesian EFT-inspired approach 

• Example: continuum extrapolation



A word on the Bayesian approach

• This is a road that can lead to heated philosophical debates about the 
use of prior information…but I don’t want to go there! 

• Bayesian methods here are used: 

• As a numerical tool, to improve stability of optimization algorithms etc 
(without changing the results); 

• As a formal framework (Bayes' theorem), to derive some useful 
probability formulas 

• Everything I want to talk about here works more or less independently of 
choice of prior information 

• Bonus disclaimer: I am a physicist, not a statistician



Bayes’ theorem

• In the context of fitting a data set D to a model M, this 
formula is typically written in a slightly different way:

p(A)p(B|A) = p(B)p(A|B)

“posterior” or “evidence”

“likelihood” “prior”

usually ignored

p(M |D) =
p(D|M)p(M)

p(D)



Fitting the model: least squares

• Fix the functional form of the model M (for now), in terms 
of a set of model parameters a. 

• Least-squares minimization to find the best fit from the 
data.  E.g. for a simple data series of points (xi,yi,σi), 
minimize
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• Chi-squared determines the likelihood function:

p(D|M) / exp

✓
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Parameter estimation

• In Bayesian terms, expectation values of the model 
parameters are determined by the posterior PDF:

hf(a)i =
Z 1

�1
da f(a)p(M |D)

• Assuming our prior function p(M) is constant, then the 
posterior p(M|D) is proportional to the likelihood p(D|M)!



Taming instability in multi-exponential fits
• A simple source of instability in multi-exponential fits is from 

ordering ambiguity: if our model function is just a sum of 
exponentials, who says “E0” has to be the ground-state energy? 

E0, log(E1 � E0), log(E2 � E1), ...
• This leaves one ambiguity: the fitter can still attempt to model the data 

by making E0 and a0 very small (effectively zeroing out the state!) and 
then making state 1 the ground state.  (From N! peaks to N peaks.)

• Mapping is a good way to resolve this: impose the ordering on the 
model, e.g. by using E0 and manifestly positive energy deltas as the 
parameters:

f(t,~ai, ~Ei) =
NX

i=1

aie
�Eit
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“Constrained curve fitting” (arXiv:hep-lat/0110175)

• What if we want to incorporate prior information on some or all of the parameters? 

• Lepage et al, “constrained curve fitting”.  Define the “augmented chi-squared” 
function by addition of Gaussian priors on the fit parameters:

• Relatively mild priors can prevent optimizers from “wandering” off in a 
flat, unphysical direction.  In practice, setting of “priors” tends to be 
driven by looking at a subset of the data, not really on external 
information…
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Figure 2. Fit values for the two lowest energies
from unconstrained fits with different numbers of
terms in Gth. The correlator is a local-local Υ
correlator and is fit for all t’s.

steadily in a traditional analysis, as is evident in
Fig. 2. The reason is easily understood. The
large uncertainties in E1 and E2 for the 8-term
fit, for example, result because the parameters
for higher-energy states are poorly constrained by
the data and therefore wander off to unphysical
values. Thus amplitude A4 ranges between five
and ten times A1 in the 8-term fit, while quark
models suggest that A4 is of order A1 or smaller.
Since the allowed range for A4 affects the error
estimates for other parameters, the errors on E1

and E2 will be unreasonably large so long as the
fitting code assumes that A4 ≈ 10A1 is plausible.
We need some way to teach physics to the fitting
code.

To constrain fit parameters to physically rea-
sonable ranges, we augment the χ2 before mini-
mizing:

χ2 → χ2
aug ≡ χ2 + χ2

prior, (5)

where

χ2
prior ≡

∑

n

(An − Ãn)2

σ̃2
An

+
∑

n

(En − Ẽn)2

σ̃2
En

. (6)

The extra terms in χ2
aug favor An’s in the inter-
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Figure 3. Fit values for the two lowest energies
from constrained fits with different numbers of
terms in Gth. The correlator is a local-local Υ
correlator and is fit for all t’s.

val Ãn ± σ̃An
and En’s in Ẽn ± σ̃En

. The Ãn’s,
σ̃An

’s . . . are inputs to the fitting procedure. We
choose reasonable values for them on the basis of
prior knowledge. This set of input parameters is
referred to collectively as the “priors.”

Having chosen the priors, the procedure for a
constrained fit is to minimize χ2

aug fitting all of
the Monte Carlo data (tmin = 0). The number of
terms in Gth is increased until fit results converge
for the parameters of interest. Unlike tmin, the
number of terms in Gth need not be optimized; it
is simply increased until results converge. This is
illustrated by fit results for E1 and E2 from our
Υ data, which are plotted in Fig. 3 for fits with
different numbers of terms.

The numerics are greatly improved by the con-
straints. For example, one can easily fit 100 terms
in Gth to the Υ data, even though there are only
24 data points. The fit results for all but the first
few parameters simply reproduce the prior infor-
mation in such a highly overparameterized fit.

The error estimates for the fit parameters in
our Υ fits automatically combine both the sta-
tistical errors in the Monte Carlo data, and the



“Constrained curve fitting”, continued

• There are other options to deal with multi-exponential fit 
stability: 

• Careful tuning of initial conditions (but you sort of need 
to know the right answer already…) 

• “Sequential” fitting algorithms (e.g. Kentucky group) 

• Multiple effective masses/Vandermonde polynomials 
(Fleming et al.) 

• Probably more alternatives I’ve forgotten



Two-stage constrained fits
• As long as we can maintain a good determination of the ground state, with imposed 

ordering the rest of the fit should be stable 

• Idea: why not use the correlation function itself to constrain the ground state parameters? 

• Identify a “plateau” region, fit to estimate all ground-state parameters 

• Set priors using mean values as determined from plateau, and width = n times 
plateau fit uncertainty 

• Constrained fit to the full data set as normal 

• May be adaptable to be a black-box method? 

• If we set the priors by looking at effective mass plots, we’re already more or less doing 
this in practice!  Actually basing them on a fit to the same correlator can be more 
automated. 

• (In principle, we could use n=1 and then fit the correlator below the plateau as normal, 
but only if the data are independent; and for a lattice correlator, they’re definitely not!)



Numerical test
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Stability for replication methods (jackknife/bootstrap)!



Model selection and parameter estimation

• Parameter estimation requires a choice of model to be fit 
to the data 

• Very often in lattice analysis (continuum extrapolation, 
chiral extrapolation, multi-exponential fits) our model is an 
effective field theory, based on an expansion with a 
formally infinite number of terms! 

• How do we decide where to truncate?  What is the error 
we make in doing so?



Systematic error estimation

• A common approach is to pick a reasonable stopping point (e.g. NLO 
chiral fit), then go one step further (NNLO).  The difference between 
the parameter estimates from NLO and NNLO is taken to estimate 
the systematic error.  This seems conservative! 

• Some collaborations have tried method of weighted sum using p-
values.  Less conservative, but is it right? 

• We can appeal to effective field theory and naturalness, and just 
assume that the coefficients of the neglected terms are "order one” 
and try to estimate things…but we can disagree on what “order one” 
means too. 

• Bayesian methods give us a more rigorous way to decide what to do!



Bayesian model averaging (arXiv:0808.3643)

• Divide into a family of nested models, with some 
common parameters ares and additional parameters 
amarg (within each model)

2

1. INTRODUCTION

One of the central problems in lattice field theory is that of model fitting and parameter esti-
mation. (our models are complicated and di�cult to deal with numerically: sums of exponentials,
non-linear functions of several variables in chiral/continuum extrapolations.)

(even worse, the models all have known limits of applicability. chiral perturbation theory
breaks down at large masses. a simple two-point functions contains in principle contributions from
an infinite tower of excited states; results can depend subtly on the analyst’s choice of fit range
and number of excited states to include in the model.)

(lattice theorists do try to estimate the systematic errors due to model truncation and data
truncation, and in fact most tend to be too conservative if anything!)

(inspired by EFT approach of Schindler and etc. - cite.)
(similar in spirit to BMW (and HPQCD?) method of “weighted p-value averaging”, with two

key innovations: extension to Bayesian analysis, and allowing marginalization over parameters with
the integral. this statement might depend on my analysis of how cutting up the data set should
be weighted...)

(quadratic form with some assumptions? adding matrices in quadrature? related to stu↵ with
Yuzhi and Jim?)

(are correlations an issue for any of these equations?)

2. BAYESIAN FRAMEWORK

(the ”master formula”)

pr(a
res

|D) =
X

M

Z
da

marg

pr(D|a,M)pr(a|M)pr(M)

pr(D)
. (1)

where the set of parameters {a} is divided into {a
res

}, a set of residual parameters, and {a
marg

},
the set of parameters to be marginalized over. The space of models {M} is “nested”, in that all
models in the space we are considering must reduce to a common model depending on a

res

after
marginalization, if we are to make meaningful comparisons.

Note that we can reconstruct the combined estimate from the individual model fit results! Note
the following:
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)pr(a
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But now if we marginalize the integral on the right-hand side over the space of models {M}, we
just obtain the total, model-independent expectation value for f :

X

M

Z
da

res

f(a
res

)pr(a
res

,M |D) =

Z
da

res

f(a
res

)pr(a
res

|D) = hf(a
res

)i . (7)

• Priors on the higher-order terms are important to avoid 
runaway numerics, but we can marginalize over what we 
mean by “order one” if we’re clever! 



Parameter estimation by marginalization
• Combination of model parameter estimates can be shown to be a 

weighted sum over individual expectation values, with weights given by 
the model evidence:

3

Thus, we arrive at the relation

hf(a0)i =
X

M

hf(a0)i
M

pr(M |D). (8)

All of the moments of the fully combined PDF can thus be obtained as a weighted average over
individual model choices, with the weight factors given by the Bayesian evidence for each individual
model is this the right term?

pr(M |D) =

Z
da pr(M, a|D) (9)

=

Z
da

pr(D|a,M)pr(a,M)

pr(D)
(10)

=

Z
da

pr(D|a,M)pr(a|M)pr(M)

pr(D)
. (11)

(OK, now how do we compute these...?) If pr(M) is flat and we consider pr(D|M) to be given
by the chi-square distribution evaluated at the best-fit point rather than doing the integral, then...

3. DATA SUBDIVISION

4. A SIMPLE EXAMPLE

Here is an extremely simple toy model to demonstrate the method. We are given a data set D
with three data points (x, y):

D � {(1, 1.1), (2, 1.8), (3, 2.6)}. (12)

We would like to extrapolate to x = 0 and estimate the intercept. But should we carry out a
constant extrapolation, or linear?

We take as our space of model functions try the degenerate m = 2 case too?

f

m

(x) =

(
a0, m = 0;

a0 + a1x, m = 1.
(13)

and our goal is thus to estimate the mean and variance of a0. Following the master formula above,
we have

pr(a0|D) =
pr(D|a0,m = 0)pr(a0|m = 0)pr(m = 0)

pr(D)
+

Z
da1

pr(D|a,m = 1)pr(a|m = 1)pr(m = 1)

pr(D)
.

(14)
Since we have no prior knowledge about which functional form to use, we take the flat prior

pr(m = 0) = pr(m = 1) = 1/2. The likelihood of the data given the model is given by the
chi-square goodness of fit:

pr(D|a,m) / exp(��

2
/2) =
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i
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Finally, for the parameter prior we use independent Gaussian priors centered at zero,

pr(a0|m = 0) / exp

✓
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◆
, (16)
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• The evidence requires computing an integral over the likelihood:

• Various methods on the market for estimation of this 
integral, for different problems.  Suggestions welcome!  (An 
MCMC approach which could re-use samples drawn for 
doing the fit in the first place would be particularly nice…)
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m = 0 m = 1 marginalized

a0 1.93(12) 0.43(30) 0.43(30)

a1 — 0.75 —

pr(M |D) 1.538⇥10�6 0.999998 —

�

2
aug 30.1 1.23 —

p-val 1.088 ⇥10�6 0.999999 —

Table I: Individual fits and marginalized Bayesian combination for �y = 0.2. . Last row shows the p-value
computed from the augmented �

2 value.

m = 0 m = 1 marginalized

a0 1.78(55) 0.39(1.18) 0.70(1.22)

a1 — 0.75 —

pr(M |D) 0.2238 0.7762 —

�

2
aug 2.02 0.23 —

p-val 0.365776 0.63424 —

Table II: Individual fits and marginalized Bayesian combination for �y = 1.0.

pr(a|m = 1) / exp
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(maximum-entropy unbiased augmented PDF - refer to S&S.) (Note that I am dropping the nor-
malization of the parameter priors here. For a standard Gaussian normalization we would take
pr(a|M) ⇠ (

p
2⇡�

a

)�(M+1), but this results in a bad normalization for the marginalization integral
in the limit of removing the prior constraint, �

a

! 1. In fact to be consistent between di↵erent M
orders about the projection into the M

max

-dimensional parameter space, I’m starting to suspect
that the prefactor should ALWAYS be (

p
2⇡�

a

)�(M
max

+1)). Maybe worth a question to Schindler
directly if I can get someone else to cross-check me...)

In practice we could marginalize over the prior width �

a

as well, but for simplicity here I will
fix �

a

= 2. Analysis results are shown in tables I and II.
What if the error bars are underestimated, as can commonly occur in lattice simulations due to

autocorrelations? This is obvious from the two cases above; the relative weights of the two models
are quite sensitive to the size of the data error bars. In the limit that the errors become very small,
all of the weight shifts towards whichever model has the smallest numerical �2. It is thus crucial
to remove autocorrelation e↵ects before applying this method.

5. PRACTICAL EXAMPLE I: CHIRAL EXTRAPOLATION

6. PRACTICAL EXAMPLE II: CORRELATION FUNCTIONS

7. CONCLUSION



Caveats

• Combining things in the first place assumes our basic 
statistical picture is right!  As formulated here can’t deal 
with autocorrelations (evidence factors mis-estimated).  
Not clear what happens yet if we try to include a 
deliberately pathological model in our set… 

• Can we use this approach to deal with multi-exponential 
fits, too?  Marginalization over cutoffs on data like tmin, 
tmax?  (Important to think about for e.g. chiral perturbation 
theory fits with different mass ranges, for example.)


