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Motivation

Main goal: compute the spectral density of gluons and other
(un)physical degrees of freedom

important for e.g. DSE/BSE spectrum studies (Minkowski space)
spectral density is not strictly positive
traditional Maximum Entropy Method does not allow negative
spectral densities

D. Dudal, O. Oliveira, PJS, PRD 89 (2014) 014010
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Positivity violation

Spectral representation

D(p2) =

∫
+∞

0
dµ

ρ(µ)
p2 +µ2

On the lattice: study the temporal correlator

C(t) =
∫ ∞

−∞

dp

2π
D(p2)exp(−ipt) =

∫ ∞

0
dωρ(ω2)e−ωt

C(t)< 0

negative spectral density

positivity violation

gluon confinement

C(t)> 0 says nothing about ρ(µ)
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Positivity violation for the gluon propagator
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Already observed in lattice simulations

C. Aubin, M. C. Ogilvie, Phys. Rev D70, 074514 (2004)

A. Cucchieri, T. Mendes, A. R. Taurines, Phys. Rev. D71, 051902 (2005)
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Spectral density

Euclidean momentum-space propagator of a (scalar) physical
degree of freedom

G(p2)≡ 〈O(p)O(−p)〉

Källén-Lehmann spectral representation

G(p2) =

∫ ∞

0
dµ

ρ(µ)
p2 +µ

, with ρ(µ) ≥ 0 for µ≥ 0 .

spectral density contains information on the masses of physical
states described by the operator O

ρ(µ) =∑
ℓ

δ(µ−m2
ℓ ) |〈0|O|ℓ0〉|2 ,
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Spectral density

G = L2ρ̂ = LL∗ρ̂ where (L f )(t) ≡ ∫ ∞
0 dse−st f (s) is a Laplace

transform

inversion of Laplace transform: ill-posed problem

Way out: Tikhonov regularization
ill-posed problem y = K x
minimize ||K x − y||+λ||x||2

λ > 0 is a regularization parameter

xλ is the unique solution of the normal equation

K ∗K xλ +λxλ = K ∗y

the operator K ∗K +λ is strictly positive, hence invertible

Morozov discrepancy principle: choose λ s.t. ||K xλ − yδ||= δ
δ: “noise of input data”

A unique solution xλ,δ exists
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How-to

G(p2) =
∫

+∞

µ0

dµ
ρ(µ)

p2 +µ
,

Infrared threshold µ0 (to be determined)
Gi ≡ G(p2

i ), N data points, we will minimize

Jλ =
N

∑
i=1

[∫
+∞

µ0

dµ
ρ(µ)

p2
i +µ

−Gi

]2

+λ
∫

+∞

µ0

dµ ρ2(µ)

perturbing ρ(µ) linearly
demanding the vanishing of variation of Jλ

N

∑
i=1

[∫
+∞

µ0

dν
ρ(ν)

p2
i +ν

−Gi

]

︸ ︷︷ ︸

≡ci

1

p2
i +µ

+λρ(µ) = 0 (µ≥ µ0)
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How-to 2

(regularized) solution to KL inversion:

ρλ(µ) =−1

λ

N

∑
i=1

ci

p2
i +µ

θ(µ−µ0) ,

threshold crucial to avoid a singularity at µ= 0

ci =−1

λ

∫
+∞

µ0

dν
1

p2
i +ν

N

∑
j=1

1

p2
j +ν

cj −Gi ,

QCDNA VIII



Introduction and Motivation
New method to compute spectral densities

Conclusions and outlook

How-to
Landau gauge gluon propagator
Spectral density at finite T

How-to 3

λ−1M c + c =−G ,

Mij =

∫
+∞

µ0

dν
1

p2
i +ν

1

p2
j +ν

=
ln

p2
j +µ0

p2
i +µ0

p2
j −p2

i

.

Mii = 1/(p2
i +µ0)

perfectly well-defined, symmetric matrix for µ0 > 0
inverse KL operation reduced to solving a linear system
reconstructed propagator:

Gλ(p
2) =

∫
+∞

µ0

dµ
ρλ(µ)
p2 +µ

=−1

λ

N

∑
i=1

ci ln p2
+µ0

p2
i +µ0

p2 −p2
i

.
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Test

Consider a (non-relativistic) “Breit-Wigner” toy spectral density with
nonzero threshold,

ρ(µ) =
µ

(µ−m2)2 +Γ2/4
θ(µ−µ) (1)

m2 = 1 GeV2 ,Γ = 1 GeV2 ,µ= 0.1 GeV2 .

propagator computed using a Gauss-Legendre quadrature with
1000 points and

√
µ

max
= 20 GeV

to get the reconstructed spectral density: Gauss-Jordan normal
elimination, N = 120 entry data points.

We assigned to each data point Gi the percent errors
ε = 10,5,1,0.1,0.001,0.0001 according to Gi × ε× (0.5+ 0.5r),
with r a uniform random number ∈ [0,1].
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Test

Input propagators and
reconstructions

Spectral functions
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Real case

Landau gauge SU(3) Yang-Mills gluon propagator 804, β = 6.0

Input propagator and
reconstructions

λ as a function of µ0
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Gluon spectral function

Linear scale Log scale
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Longitudinal propagator spectral densities

Preliminary results!
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Method to compute spectral densities
does not rely on the a priori positivity of ρ(µ)

Results for the Landau gauge gluon propagator
Preliminary results for finite temperature

Positivity violation scale increases with temperature
Gluons behave as quasi-particles for high T?

Outlook
finite temperature (T ∼ Tc)
Landau gauge ghost propagator
physical SU(3) lattice scalar glueball
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