BIASED METROPOLIS-HEATBATH ALGORITHM

Alexei Bazavov and Bernd A. Berg

Department of Physics,
Florida State University

May 1, 2007

Introduction

Overview of Local Updating Algorithms
Biased Metropolis-Heatbath Algorithm
BMHA for SU(2) Gauge Theory
BMHA for U(1) Gauge Theory
BMHA for SU(2) F-A Gauge Theory
Summary

Introduction

Notation

- Probability density function (PDF) $P(x), Q(x)$
- Assume for clarity $-1 \leqslant x \leqslant 1$
- Cumulative distribution function (CDF)

$$
F(x)=\frac{\int_{-1}^{x} d x^{\prime} P\left(x^{\prime}\right)}{\int_{-1}^{1} d x^{\prime} P\left(x^{\prime}\right)}
$$

- r is a uniformly distributed random number $r \in[0,1)$
- In a Markov process subindex o corresponds to current state, n - to a new state
- U, V, T - SU(N) matrices in fundamental representation Goal: efficiently sample $P(x)$

Metropolis Algorithm (MA)

- Sampling procedure:

1. Generate x_{n} uniformly in the domain
2. Accept with probability

$$
\gamma_{o \rightarrow n}=\min \left\{1, \frac{P\left(x_{n}\right)}{P\left(x_{o}\right)}\right\}
$$

3. Otherwise $x_{n}=x_{0}$

- Acceptance rate (AR) is the number of accepted over the number of proposed changes
- Low AR leads to a high degree of autocorrelation

Ideal Heatbath (IHB)

- The "filter"

$$
x=F^{-1}(r)
$$

converts a uniformly distributed random number r into x distributed with $P(x)$

- In many cases numerical evaluation of F^{-1} is too slow to be an option

Heatbath (HB)

- "Envelope" the desired distribution $P(x)$ with some other PDF $Q(x)$ which can be sampled efficiently (e.g. with an ideal heatbath)
- Von Neumann rejection method:

1. Sample x_{n} from $Q(x)$
2. Accept with probability

$$
\gamma_{o \rightarrow n}=\frac{P\left(x_{n}\right) / Q\left(x_{n}\right)}{(P(x) / Q(x))_{\max }}
$$

3. Repeat until accepted (RUA)

- Trial rate (TR) is the number of trials needed for x_{n} to be accepted

Example: $P(x)=\left(1-x^{2}\right)^{3 / 2}$

- Enveloping PDF $Q(x)=1$
- TR is equal to the ratio of areas: $16 / 3 \pi \simeq 1.70$

Example: $P(x)=\left(1-x^{2}\right)^{3 / 2}$

- Enveloping PDF $Q(x)=\cos (\pi x / 2)$
- TR is equal to the ratio of areas: $32 / 3 \pi^{2} \simeq 1.08$

General Approach

The generalized transition probabilities (Hastings, 1970):

$$
W_{o \rightarrow n}=Q_{o \rightarrow n} \gamma_{o \rightarrow n}
$$

- $Q_{0 \rightarrow n}$ - proposal probability
- $\gamma_{o \rightarrow n}$ - acceptance probability

$$
\gamma_{o \rightarrow n}=\frac{f\left[\min \left\{\left(P_{o} Q_{o \rightarrow n}\right) /\left(P_{n} Q_{n \rightarrow 0}\right),\left(P_{n} Q_{n \rightarrow o}\right) /\left(P_{o} Q_{o \rightarrow n}\right)\right\}\right]}{1+\left(P_{o} Q_{o \rightarrow n}\right) /\left(P_{n} Q_{n \rightarrow o}\right)}
$$

with $0 \leqslant f(x) \leqslant 1+x$ for $0 \leqslant x \leqslant 1$
A simple possibility:

$$
f(x)=1+x
$$

General Approach

Finally

$$
\gamma_{o \rightarrow n}=\min \left\{1, \frac{P_{n}}{P_{o}} \frac{Q_{n \rightarrow 0}}{Q_{o \rightarrow n}}\right\}
$$

For the previous example

$$
\gamma_{o \rightarrow n}=\min \left\{1, \frac{P\left(x_{n}\right)}{P\left(x_{o}\right)} \frac{Q\left(x_{o}\right)}{Q\left(x_{n}\right)}\right\}
$$

The choice of $Q(x)$ influences only AR , with any $Q(x)$ a Markov process with such transition probabilities results in sampling $P(x)$ distribution

Example: $P(x)=\left(1-x^{2}\right)^{3 / 2}$

- $F_{Q}(x)$ is a piece-wise linear approximation of $F_{P}(x)$ ($m=4$ steps)
- $Q\left(x \in\left[x_{i-1}, x_{i}\right)\right)=1 /\left(m \Delta x_{i}\right), i=1, \ldots, m$

BMHA

- Construct BMHA table: $x_{0}<x_{1}<\ldots<x_{m}$
- Sampling procedure:

1. Find i_{o} such that $x_{o} \in\left[x_{i_{0}-1}, x_{i_{0}}\right)$
2. Generate integer i_{n} uniformly from 1 to m
3. Generate x_{n} uniformly in the interval $\left[x_{i_{n}-1}, x_{i_{n}}\right)$
4. Accept with probability

$$
\gamma_{o \rightarrow n}=\min \left\{1, \frac{P\left(x_{n}\right)}{P\left(x_{o}\right)} \frac{\Delta x_{i_{n}}}{\Delta x_{i_{o}}}\right\}
$$

5. Otherwise $x_{n}=x_{0}$

- Proposal probability of the heatbath is combined with Metropolis-type acceptance probability

SU(2) Gauge Theory

$$
\begin{gathered}
P(U)=\exp \{\beta S(U)\}, \quad S(U)=\frac{1}{2} \sum_{i=1}^{6} \operatorname{Re} \operatorname{Tr}\left[T_{i} U\right] \\
T=\sum_{i=1}^{6} T_{i}, \quad \text { let } \quad \alpha^{2}=\operatorname{det}\|T\|, \quad 0 \leqslant \alpha \leqslant 6 \\
\text { then } \tilde{T}=\frac{1}{\alpha} T \in \operatorname{SU}(2), S(U)=\frac{1}{2} \alpha \operatorname{ReTr}[\tilde{T} U] \\
P(\alpha, U) d U=\exp \left\{\frac{\beta \alpha}{2} \operatorname{ReTr}[\tilde{T} U]\right\} d U \\
V=\tilde{T} U, \quad d V=d U, \quad V=a_{0} I+i \vec{a} \vec{\sigma} \\
d V=\sqrt{1-a_{0}^{2}} d a_{0} d \Omega_{\vec{a}}, \quad \operatorname{ReTr}[V]=2 a_{0} \\
P\left(\alpha, a_{0}\right)=\sqrt{1-a_{0}^{2}} \exp \left\{\beta \alpha a_{0}\right\}
\end{gathered}
$$

SU(2) Gauge Theory

SU(2) Gauge Theory

SU(2) Gauge Theory

Lattice: 4×16^{3}
Coupling: $\beta_{g}=2.3$
Sweeps: $16384+32 \times 20480$
CDF discretization: 32×128

	HB (FHKP)	Metropolis	BMHA
CPU time	$194,873[\mathrm{~s}]$	$181,321[\mathrm{~s}]$	$199,244[\mathrm{~s}]$
TR $/$ AR	1.043	0.111	0.975
$\left\langle\operatorname{Tr}\left(U_{\square}\right) / 2\right\rangle$	$0.603147(17)$	$0.603066(52)$	$0.603111(21)$
$\tau_{\text {int }}$	$49.8(3.5)$	$409(66)$	$48.2(3.8)$

U(1) Gauge Theory

U(1) Gauge Theory

U(1) Gauge Theory

Lattice: 4×16^{3}
Coupling: $\beta_{g}=1.0$
Sweeps: $16384+32 \times 20480$
CDF discretization: 32×128

	Metropolis	BMHA
CPU time	$84,951[\mathrm{~s}]$	$107,985[\mathrm{~s}]$
AR	0.286	0.972
$\langle\cos \phi \square\rangle$	$0.59103(16)$	$0.59106(12)$
$\tau_{\text {int }}$	$341(26)$	$142(10)$

SU(2) F-A Gauge Theory

$$
P(U)=\exp \left\{\beta_{f} S_{f}(U)+\beta_{a} S_{a}(U)\right\}, \quad S_{a}(U)=\frac{1}{3} \sum_{i=1}^{6}\left(\operatorname{ReTr}\left[T_{i} U\right]\right)^{2}
$$

How to proceed:

- For proposal probabilities use BMHA table which takes into account only the fundamental part (BMHA-fund)
- Approximate the adjoint part by neglecting fluctuations in T_{i} :

$$
T=\sum_{i=1}^{6} T_{i}, \quad T_{i} \rightarrow T_{i}^{\prime}=\frac{1}{6} T
$$

Proposal PDF

$$
Q\left(\alpha, a_{0}\right)=\sqrt{1-a_{0}^{2}} \exp \left\{\beta_{f} \alpha a_{0}+\frac{2 \beta_{a}}{9} \alpha^{2} a_{0}^{2}\right\}
$$

SU(2) F-A Gauge Theory

Lattice: 4^{4}
Coupling: $\left(\beta_{f}, \beta_{a}\right)=(1.5,0.9)$
Sweeps: $1000+32 \times 1000$
CDF discretization: 32×128

	Metropolis	BMHA-fund	BMHA
AR	0.065	0.65	0.82
$\left\langle U_{\square}^{f}\right\rangle$	$0.3451(15)$	$0.34636(52)$	$0.34694(62)$
$\left\langle U_{\square}^{\square}\right\rangle$	$0.6368(15)$	$0.63798(47)$	$0.63853(56)$
$\tau_{\text {int }}\left(\left\langle U_{\square}^{f}\right\rangle\right)$	$100.2(8.6)$	$19.5(1.7)$	$19.8(2.5)$
$\tau_{\text {int }}\left(\left\langle U_{\square}^{\square}\right\rangle\right)$	$95.9(8.0)$	$17.1(1.4)$	$16.5(2.2)$

SU(2) Gauge Theory

CDF and BMHA tables can be built out of data: take into account how parameters are distributed (apriori unknown)

Summary

BMHA

- comparable in performance with existing $\mathrm{HB}(\mathrm{SU}(2))$ or better (U(1) and SU(2) F-A)
- easy to construct
- generalizable for multivariate PDFs
- has uniform speed
- can be constructed from data (!)
- easily combined with multicanonical algorithm

