
1

Multigrid Methods for Lattice QCD

James Brannick
Center for Computational Mathematics and Applications

The Pennsylvania State University
http://math.psu.edu/∼brannick/

brannick@psu.edu

Fourth International Workshop
on Numerical Analysis and Lattice QCD

2

Participants in the MG-QCD project

Ball State I. Livshits
Boston Univ. R. Brower

M. Clark
J. Osborne
C. Rebbi

Boulder M. Brezina
C. Ketelesen
T. Manteuffel
S. McCormick
J. Ruge

Columbia A. Bessen
D. Keyes

LLNL R. Falgout
Penn State J. Brannick

V. Nistor
J. Xu
L. Zikatanov

T. U. Delft S. MacLachlan
Kees Oosterlee

Weizmann Inst. A. Brandt

3

Presentation Plan

∗ Model problems - solver challenges

∗ Dirac Wilson system of QCD
∗ Schwinger model of QED

∗ Smoothed Aggregation (A)MG

∗ Adaptive (A)MG Approaches

∗ Numerical Results

∗ Future Work

4

4D Dirac Wilson system

(Mφ)(x) = φ(x)− κ
(4∑

µ=1

(
I − γµ

)
⊗ Uµ(x)φx+eµ

+
(
I + γµ

)
⊗ U∗µ(x− eµ)φx−eµ

)

∗ For fixed x, Uµ(x) ∈ SU(3): β →∞⇒ Uµ → I

∗ γµ ∈ C4×4: sparse matrices with 4 nonzero entries, ±1,±i
∗ M ∈ Cn×n, n = 12 · n1 · n2 · n3 · n4

∗ M is positive for 0 ≤ κ < κc and M becomes very ill-conditioned for κ ≈ κc

∗ γ5M = M∗γ5

5

Simplification: 2D Dirac Wilson system

M =
1
2

(2∑
µ=1

σµ

(
∇+

µ +∇−µ
)

+∇−µ −∇+
µ

)
+m

∗ Cov. finite difference operators (Uµ ∈ U(1)):

(∇+
µ f)(x, s) = Uµ(x)f(x+ eµ, s)− f(x, s)

(∇−µ f)(x, s) = f(x, s)− U∗µ(x− eµ)f(x− eµ, s)

∗ H = σ3M = M∗σ3 = H∗, with σ3 =
(

1 0
0 −1

)

6

2D Hermitian Dirac Wilson System Hf = ψ(
A B
B∗ −A

)(
f(x, 1)
f(x, 2)

)
=
(
ψ1

ψ2

)

Taking a = 1
N on a fixed domain and setting Uµ ≡ 1 gives(
A B
B∗ −A

)2

=
(

(mI − a
2∆a)2 −∆a 0

0 (mI − a
2∆a)2 −∆a

)

For m = 0, 1 ∈ Null(H) and (mI − a
2∆a)2 −∆a = −∆a(I − a2

4 ∆a), with

σ(−∆a) ⊆ [0,
8
a2

] and σ(I − a
2

4
∆a) ⊆ [1, 3]

7

General case: Lowest eigenmode of H2

Real Imag

0

5

10

15

20

0

5

10

15

20
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

5

10

15

20

0

5

10

15

20
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

m ≈ mcr, β = 3, n = 2 · 16 · 16 lattice

8

Spectrum of M

m = 0 m = −.1 m = −.2

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.5

0

0.5

1

β = 3, mcr ≈ −.21, n = 2 · 16 · 16

9

Spectrum of H and H2

Free Field β = 3

50 100 150 200 250 300 350 400 450 500

−2

0

2

4

6

8

10

50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

6

8

10

12

14

16

m ≈ mcr, n = 2 · 16 · 16

10

MG for lattice fermions circa 2000

∗ R. Ben-Av, et al, Fermion simulations using parallel transported multigrid,
Phys. Lett. B253 (1991), pp. 185–192

∗ R. Ben-Av, M. Harmatz, S. Solomon, and P. G. Lauwers, Parallel
transported multigrid for inverting the dirac operator: Variants of the method

and their efficiency, Nucl. Phys. B405 (1993), pp. 623–666

∗ A. Brandt, Multigrid methods in lattice field computations, Nucl Phys. Proc.
Suppl. 26 (1992), pp. 137–180

∗ R. C. Brower, R. G. Edwards, C. Rebbi, and E. Vicari, Projective
multigrid for Wilson fermions, Nucl. Phys. B366 (1991), pp. 689–705

∗ P. Hasenfratz, Prospects for perfect actions, Nucl. Phys. Proc. Suppl. 63
(1998), pp. 53–58

∗ Many others ...

11

N = 64, Jacobi (Diamond), CG (circle), MG V-cycle (square), W-cycle (star)
Brower, et. al., Projective multigrid for Wilson fermions (1991)

12

*

m 0
!.26

10

20

30

!.24 !.22 !.20 !.18 !.16

*

*

*

! = 10*

! = 5

! = 3

aS

A!
PC

G
 it

er
at

io
ns

 (1
0

)

N = 64 x 64

6

*

Brannick, et. al., Adaptive smoothed aggregation in lattice QCD, Lecture Notes
Comp. Sci. Eng., Springer-Verlag, 2006

13

Extreme simplification: Gauge Laplacian

L =
∑

µ

∇−µ −∇+
µ +m

∗ Scaling by 1
2(2+m) gives L = I − κD, D =

(
0 Deo

Doe 0

)
with L > 0 for

0 ≤ κ < κcr := 1
λmax(D)

14

Presentation Plan

∗ Model problems - solver challenges

∗ Dirac Wilson system of QCD
∗ Schwinger model of QED

∗ Smoothed Aggregation (A)MG

∗ Adaptive (A)MG Approaches

∗ Numerical Results

∗ Future Work

15

Method of subspace corrections

∗ Abstract problem: Find u ∈ V such that Au = f , f ∈ V ∗, A > 0

∗ Space decomposition: V =
∑

i Vi

Idea: Correct the error in each subspace by solving Aiei = ri for i = 1 : J

∗ exactly, if each of the subspaces is small (e.g., multiplicative Schwarz)
∗ approximately, if the subspaces are of large dimension (e.g., multigrid)

Algorithm MSC With u ← u0, for i = 1 : J repeat the subspace correction
u← u+ ei where ei ∈ Vi is given by

ei = M−1
i Πi(f −Au)

∗ Examples: (1) V = Rn with Vi := span{δi} and Mi = Ai = aii gives Gauss-
Seidel; (2) VJ ⊃ VJ−1 ⊃ ... ⊃ V1 and Mi ≈ Ai results is MG

16

Let Ti = M−1
i Aiπi, then u− u` = EJ(u− u`−1),

EJ = (I − TJ)(I − TJ−1) . . . (I − T1)

Theorem.[XU AND ZIKATANOV, J. of AMS (2003)] The convergence factor is
obtained via ‖EJ‖2A = 1− 1

c0+1,

c0 = sup
‖v‖=1

infP
i vi=v

J∑
i=1

(T̄−1
i T ∗i wi, T

∗
i wi)A with wi =

J∑
j=i

vj − T−1
i vi

where T̄i ≡ T ∗i + Ti − T ∗i Ti SPD⇒ c0 <∞

17

Application to MG

∗ For finite element spaces and regular refinement VJ ⊃ VJ−1 ⊃ ... ⊃ V1. In such
settings, under appropriate assumptions, it is straightforward to show that the con-
vergence depends logarithmically on the number of levels

∗ If nested finite element meshes are not available, then the standard arguments do not
apply!

∗ Motivated by success of MG methods algebraic versions were proposed to handle
general problems. Originally for second-order elliptic equations with discontinuous
coefficients on unstructured grids

∗ “Algebraic” stands for the fact that all the tools of the method are constructed solely
on the basis of the original matrix A, in a setup phase

∗ In AMG, the subspaces are built “on the fly”, making multilevel theory for the con-
vergence of such algorithms very difficult

18

AMG estimates (J = 2)

Two-grid error propagator:

Etg = (I −M−tA)(I − πA)(I −M−1A)

with πA := P (P tAP)−1P tA. Two-level convergence factor is obtained via

‖Etg‖2A = 1− 1
K

; K(P) = sup
v

‖(I − πM̄)v‖M̄
‖v‖A

where M̄ := M t(M t +M −A)−1M . Analysis of recursive multi–level method
depends in addition on stability:

‖PR‖A < η; RP = Ic

19

What does it mean to choose Vc = Range(P) ⊂ V ?

Coarse space is constructed automatically within the algorithm, level by level, in a
(hopefully) computationally optimal setup procedure which involves

1. Picking a set of coarse variables, i.e., set of indices
Nc = {i1, . . . , inc} → graph theoretic approaches

2. Definiing Vc = span{ψk}nc
k=1 such that each ψk is supported in Ωk, for a vector:

Ωk ⊂ {1, . . . , n} → null space of the system matrix

∗ Each of the Vc (or Vi obtained recursively) must satisfy certain properties, related to
the convergence of the overall algorithm.

20

Smoothed Aggregation

∗ Define strong nbhd. of dof i ∈ Ω =
{1, .., n} as

Ni(ε) := {j 6= i : εa2
ij > aiiajj}

∗ Using Ni and ind. set algorithm, Ω
partitioned into set of disjoint aggre-
gates {Ai}nc

i=1 such that ∪nc
i=1Ai =

Ω

agg(Ω, A)

do i ∈ Ω̄

if Ni(ε) ≥ 1
Aj = Ni(ε) ∪ {i}
Ω̄← Ω̄ \ Aj

j ← j + 1
end if

end do

21

Smoothed Aggregation MG on a lattice

∗ On structured lattices we define
{Ai}nc

i=1 using simple geomet-
ric blocking, again such that

∪nc
i=1Ai = Ω

∗ This fixes the sparsity pattern
of P and hence also of Ac =
P tAP

22

Smoothed Aggregation (A)MG

Given B = [x], x ∈ Rn, and the set of aggregates, {Ai}nc
i=1

P̃ =

x1...
xl1

...

xnlc...
xn

}
A1

...}
Anc

∗ nlc = n− lnc + 1, li = |Ai|

∗ P̃ scaled: P̃ tP̃ = I , P̃ xc = x

∗ P = (I − τA)P̃

23

Multiple vector preserving interpolation

For B := [x(1), ..., x(r)], x(i) ∈ Rn,

P̃=

X1

...

Xnc

}
A1 → Q1R1

...}
Anc → QncRnc

∗ Xi ∈ Rli×r

∗ P̃ tP̃ = QtQ = I

∗ P̃Bc = P̃R = B

24

Smoothed Aggregation (A)MG convergence theory

Theorem: (P. Vanek, M. Brezina, J. Mandel, 2001) Assume that there exists a
constant, Ca > 0, such that for every u ∈ Rn and every l ∈ {1, , , L}, the following
approximation property holds:∑

i

min
w∈Rr

‖u−B1w‖2Al
i
≤ Ca‖u‖2A

Then

‖x̃−MG1(x, b1)‖A ≤

(
1− 1

c(L)

)
‖x̃− x‖A

25

Presentation Plan

∗ Model problems - solver challenges

∗ Dirac Wilson system of QCD
∗ Schwinger model of QED

∗ Smoothed Aggregation (A)MG

∗ Adaptive (A)MG Approaches

∗ Numerical Results

∗ Future Work

26

The need for adaptive (A)MG method(s)

For Gc ≈ A−1
c we have the standard error transfer iteration

x← (I −M−tA)(I − PGcP
tA)(I −M−1A)x

The smoother is typically fixed, e.g. (block) Gauss Seidel. Thus, the sources of
potential failure of the above V –cycle are:

∗ either the interpolation error x− Pxc is large, or

∗ the coarse solver Gc cannot handle the coarse component xc of the current level
error x

Hence, the need for adapting the MG cycle and thus the coarse-level hierarchy.

To guide the adaptation on the basis of a current algebraically smooth error vector x,
represents the main feature of the “adaptive (algebraic) multigrid methods”

27

The idea of incorporating “smooth vector(s)” in the construction of a method was first
introduced by Brandt, McCormick, and Ruge (1983)

Some recent references:

A. Brandt, “Bootstrap AMG”, 2001

M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
“Adaptive smoothed aggregation (αSA),” SIAM J. Sci. Comp., 25 (2004), pp 1896–
1920

M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
“Adaptive algebraic multigrid methods,” SIAM J. Sci. Comp., 27 (2006), pp 1261–
1286

J. Brannick and L. Zikatanov, “A compatible relaxation and trace minimimization
based AMG setup algorithm,” DD16 Proceedings (2006)

28

A basic adaptive (A)MG algorithm

[(T)] For a target ρ ∈ (0, 1) test the method G by applying it to Ax = 0:

x← (I −M−tA)(I − PGcP
tA)(I −M−1A)x (1)

If xtAx ≤ %2ν xt
0Ax0 break,

else set P = [P, Pnew], Ac = P tAP

for k = 2 : L− 1
(i) set x = xc, A = Ak, Ac = Ak+1, M = Mk, P = Pk,

Gc = Gk+1, and update xc using γ applications of (1)
(ii) P = [P, Pnew], Ac = P tAP

end for
goto step [(T)] to test the new solver

end if

29

A basic adaptive (A)MG algorithm ...

In summary, based on a existing (A)MG code, using adaptation, one improves the
solver quality by changing its components one level at a time

To guarantee improved solver quality after every adaptation step, one needs efficient
algorithms for building high–quality updates Pnew of P

Today we consider the performance of a complex valued SA-based adaptive MG
algorithm

∗ Brezina, et. al., “Adaptive smoothed aggregation”, 2004

∗ Brannick, et. al., “Adaptive smoothed aggregation in lattice QCD”, 2006

30

Adaptive SA Setup

I
1
2 I

2
3 1L −

1

2

1L −

x

B

Run SA setup

x

New V−cycle

L− ...

L

;

;I
1
2 = S P 2

 1

AI)(
T

A 3 = 2
3 2

2
I 3

L−1
2

2 1AI 2
1 1

I 2)(
T

A =

2A = 0Relax on

I
2
3 = S P 3

 2

Construct

Construct P 3
2 = x x

x

P 2
1 xx =

x

I

1xA = 0Relax on

xUpdate

1

2 1

1

2

3 2

2

1

1
1

1

31

Relation to PCG

∗ A simple version of the adpative procedure mimics PCG

∗ Given e0 relax on Ae = 0 such that e1 = Se0

∗ Define P = [e1] and perform two-level MG correction:

e1 ← (I − π1)Se0, π1 = P1(P t
1AP1)−1P t

1A

∗ At kth step define Pk = [Pk−1, ek]: ek = (I−πk)Se0. Then, πk is theA-orthogonal
projector onto:

Kk = {Se0, S2e0, ..., S
ke0}

32

Presentation Plan

∗ Model problems - solver challenges

∗ Dirac Wilson system of QCD
∗ Schwinger model of QED

∗ Smoothed Aggregation (A)MG

∗ Adaptive (A)MG Approaches

∗ Numerical Results

∗ Future Work

33

Complex valued adaptive SA solver (M. Clark)

∗ Variational MG: Ac = (P f
c)tAP f

c , P f
c = Sf P̃

f
c

∗ Partition fine–level dofs into aggregates

∗ Given Bf , construct P̃ f
c and Bc such that P̃ f

c Bc = Bf

∗ Bf is computed using a multilevel power method based on error propagation oper-
ator

∗ Rely on SA framework to use Bf : in contrast to CG, representative vectors are
localized over the aggregates to approximate much larger subspace

34

Solver components / performance measures

∗ For all tests we use a point source as rhs and report iteration counts needed to reduce
relative residual by 108

∗ Smoothers: SOR with ω = 1.05 and ω-Jacobi with ω = .6

∗ The cost of a single V (ν, µ)-cycle is approximately ν · µ ·GC ·OC CG iterations,
where

GC :=
∑J

i=1 nc,i

n
and OC :=

∑J
i=1 nnz(Ai)
nnz(A)

35

0 10 20 30 40
Niter

1e-12

1e-08

0.0001

1

|re
s|

3 level, exact coarse solve
1282, m=10-7, !=1, 4x4 blocking

Gauge Laplacian: ω-Jacobi (ω = .75), GC = 1.1 OC = 1.1,1.5, 2.1

36

1e-12 1e-08 0.0001 1
mass (shift from zero)

1

10

100

1000

N
ite

r

CG
4 level, 3 vector, 4x4 blocking, PCG
4 level, 3 vector, 4x4 blocking, relaxation
6 level, 1,vector, 2x2 blocking, PCG

Mass scaling of Gauged Laplacian
V=1282, !=1.0

ω-Jacobi (ω = .75), GC = 1.2(1.3), OC = 2.1(2.5)

37

Gauge Laplacian

∗ Ritz values for N = 128, β = 1, and m = 0

λ1 = 2.1645416870664e− 01
λ2 = 2.2349797163528e− 01
λ3 = 2.2360679843404e− 01
λ4 = 2.3001814768025e− 01

∗ Iteration counts needed to reduce relative residual by 108 for aSA-PCG, V (2, 2)-
cycles with SOR, nvec = 1, 2× 2 blocking, GC = 1.3, OC = 2.4

N/m0 1.0e− 08 1.0e− 04 1.0e− 02 1.0e−01
32 8 7 6 5
64 13 13 10 7
128 14 (425) 13 (343) 11 (232) 8 (107)
256 15 15 13 8
512 15 15 13 9

38

Gauge Laplacian

∗ Ritz values for N = 128, β = 1, and m = 0

λ1 = 2.1645416870664e− 01
λ2 = 2.2349797163528e− 01
λ3 = 2.2360679843404e− 01
λ4 = 2.3001814768025e− 01

∗ Iteration counts needed to reduce relative residual by 108 for aSA-PCG, V (2, 2)-
cycles with SOR, nvec = 1, 4× 4 blocking, GC = 1.1, OC = 1.1

N/m0 1.0e− 08 1.0e− 04 1.0e− 02 1.0e−01
32 8 7 6 5
64 13 13 10 7
128 22 (425) 20 (343) 18 (232) 12 (107)
256 15 15 13 8
512 15 15 13 9

39

Gauge Laplacian

∗ Ritz values for N = 128, β = 1, and m = 0

λ1 = 2.1645416870664e− 01
λ2 = 2.2349797163528e− 01
λ3 = 2.2360679843404e− 01
λ4 = 2.3001814768025e− 01

∗ Iteration counts needed to reduce relative residual by 108 for aSA-PCG, V (1, 1)-
cycles with SOR, nvec = 1, 4× 4 blocking, GC = 1.1, OC = 1.1

N/m0 1.0e− 08 1.0e− 04 1.0e− 02 1.0e−01
32 8 7 6 5
64 13 13 10 7
128 35 (425) 27 (343) 23 (232) 17 (107)
256 15 15 13 8
512 15 15 13 9

40

Gauge Laplacian

∗ Iteration counts needed to reduce relative residual by 108 for aSA-PCG,
V (1, 1)-cycles with SOR, nvec = 1, 4× 4 blocking, GC = 1.1, OC = 1.1

m0 1.0e− 08 1.0e− 04 1.0e− 02 1.0e−01
cg its 435 343 232 107

setup - MVs 277 186 92 15
aSA-PCG its 32 24 18 10

∗ Approximate setup costs for m0 = 1.0e− 08

setup - MVs 411 277 167 123 84
aSA-PCG its 26 32 36 49 51

aSA its 31 38 59 65 78

41

Schwinger model

∗ Ritz values for N = 64, β = 1, m = 0, top. charge = 1

λ1 2.4072960956544e− 01 7.4457724811804e− 17
λ2 2.7543643782929e− 01 −1.1102230246252e− 16
λ3 2.7644821995514e− 01 6.0828034281699e− 03
λ4 2.7644821995513e− 01 −6.0828034281690e− 03

∗ Iteration counts needed to reduce relative residual by 108 for aSA-PCG applied to
H2, V (2, 2)-cycles, nvec = 1, 2× 2 blocking, GC = 1.2, OC = 2.7

setup / m0 1.0e− 04 1.0e− 03 1.0e− 02 1.0e−01
917 34 32 20 12

1361 28 27 16 7
1654 23 (2113) 20 (1058) 17 (336) 5 (106)

42

Schwinger model

∗ Ritz values for N = 64, β = 10, m = 0, top. charge = 0

λ1 5.2306384031557e− 02 −2.3671180635050e− 02
λ2 5.2306384031563e− 02 2.3671180635057e− 02
λ3 5.2574243587467e− 02 −7.9255143077699e− 03
λ4 5.2574243587460e− 02 7.9255143077641e− 03

∗ Iteration counts needed to reduce relative residual by 108 for aSA-PCG applied to
H2, V (2, 2)-cycles, nvec = 1, 2× 2 blocking, GC = 1.2, OC = 2.7

setup / m0 1.0e− 04 1.0e− 03 1.0e− 02 1.0e−01
316 34 23 14 10
504 32 23 15 10

1114 22 (1305) 22 (968) 15 (329) 10 (112)

43

Concluding Remarks

∗ Several difficulties must be addressed in designing an AMG method for QCD sys-
tems

∗ Adaptive MG methodology naturally handles these difficulties

∗ The adaptive setup is designed to expose the oscillatory low energy modes

∗ Construction of the sequence of coarse problems is based on these computed low
energy modes

∗ Key issue now is complexity

44

Current and future works

∗ Various complex-valued adaptive AMG test codes

∗ In the Classical AMG setting by MacLachlan and Osterlee
∗ In SA setting by M. Clark in serial and by A. Bessen in parallel

∗ Systems MG: block smoothers

∗ MG for Hf = φ

∗ Preconditioners based on Gauge Laplacian

∗ Parallel implementation

45

Current and future works

∗ Various complex-valued adaptive AMG test codes

∗ In the Classical AMG setting by MacLachlan and Osterlee
∗ In SA setting by M. Clark in serial and by A. Bessen in parallel

∗ Systems MG: block smoothers

∗ MG for Hf = φ

∗ Preconditioners based on Gauge Laplacian

∗ Parallel implementation

46

“Ideal” interpolation operator

Given R, let

K∗ = inf
P

sup
v

‖(I − PR)v‖2
M̄

‖v‖2A

The minimum and minimizer are given by

K∗ = 1

λmin(M̄−1
ff

Aff)
and P∗ =

[
−A−1

ffAfc

Ic

]
Thus, if K∗ is uniformly bounded, then there exists a P , namely P∗, such that the
two-level method is uniformly convergent

47

Trace minimization

∗ Assume Nc and {Ωi}nc
i=1 are given. Then

Each Ωi contains exactly one index from Nc

∗ Consider the following affine subspaces of Rn×nc:

X = {Q : Q =
[
W
Ic

]
, W ∈ Rnf×nc},

XH = {Q : Q ∈ X , Qji = 0 for all j /∈ Ωi, Q1c = e}

Here, e is an arbitrary nonzero element of Rn : e =
[
∗
1c

]

48

Definition of P

∗ Let Ii ∈ Rn×ni be the characteristic function over Ωi and define Ai = IT
i AIi.

∗ Consider

P = arg minJ(Q) := arg min trace(QTAQ), Q ∈ XH

∗ The i-th column of the unique solution to the minimization problem is given by

[P]i = IiA
−1
i IT

i Mae, M−1
a =

nc∑
i=1

IiA
−1
i IT

i

49

On the best approximation to P∗ in the trace norm

The matrix M−1
a is the standard additive Schwarz preconditioner for A where the nc

blocks are defined in terms of {Ωi}nc
i=1. Letting each Ωi = {1 : nf} and e = P∗1c we

have that

J(P∗) = trace(S(A)) and

trace(S(A)) =
nc∑

i=1

(S(A)ei, ei) =
nc∑

i=1

inf
v:vc=ei

(Av, v)

≤
nc∑

i=1

(APei, P ei) = trace(PTAP)

50

The best approximation property

Theorem. Let J(·) = |||·|||A and P be the unique solution of the trace-minimization
problem. Then

|||P∗ − P |||A = min
Q∈XH

|||P∗ −Q|||A

Proof. Let Q ∈ XH be arbitrary. Since, PT
∗ A(Q− P∗) = 0, we have

J(Q) = J(P∗ + (Q− P∗)) = trace(S(A)) + |||P∗ −Q|||2A

51

The optimal choice of e

∗ By direct computation we have that J(P) = (Mae, e), implying

|||P∗ − P |||2A = (Mae, e)− trace(S(A))

∗ We can now take the minimum with respect to e on both sides and arrive at

|||P∗ − P |||2A = trace[S(Ma)− S(A)]

where the minimizer is e =
[
−M−1

a,ffMa,fc1c

1c

]

