Multigrid Methods for Lattice QCD

James Brannick
Center for Computational Mathematics and Applications
The Pennsylvania State University
http://math.psu.edu/~brannick/
brannick@psu.edu
Fourth International Workshop
on Numerical Analysis and Lattice QCD

Participants in the MG-QCD project

Ball State	I. Livshits	Columbia	A. Bessen
Boston Univ.	R. Brower		D. Keyes
	M. Clark	LLNL	R. Falgout
	J. Osborne	Penn State	J. Brannick
Boulder	C. Rebbi		V. Nistor
	M. Brezina		J. Xu
	C. Ketelesen		L. Zikatanov
	T. Manteuffel	T. U. Delft	S. MacLachlan
	S. McCormick		Kees Oosterlee
	J. Ruge	Weizmann Inst.	A. Brandt

Presentation Plan

* Model problems - solver challenges
* Dirac Wilson system of QCD
* Schwinger model of QED
* Smoothed Aggregation (A)MG
* Adaptive (A)MG Approaches
* Numerical Results
* Future Work

4D Dirac Wilson system

$$
\begin{aligned}
(M \phi)(x)=\phi(x)-\kappa\left(\sum_{\mu=1}^{4}\right. & \left(I-\gamma^{\mu}\right) \otimes U_{\mu}(x) \phi_{x+e_{\mu}} \\
& \left.+\left(I+\gamma^{\mu}\right) \otimes U_{\mu}^{*}\left(x-e_{\mu}\right) \phi_{x-e_{\mu}}\right)
\end{aligned}
$$

* For fixed $x, U_{\mu}(x) \in S U(3): \beta \rightarrow \infty \Rightarrow U_{\mu} \rightarrow I$
* $\gamma^{\mu} \in \mathbb{C}^{4 \times 4}$: sparse matrices with 4 nonzero entries, $\pm 1, \pm i$
* $M \in \mathbb{C}^{n \times n}, n=12 \cdot n_{1} \cdot n_{2} \cdot n_{3} \cdot n_{4}$
* M is positive for $0 \leq \kappa<\kappa_{c}$ and M becomes very ill-conditioned for $\kappa \approx \kappa_{c}$
* $\gamma^{5} M=M^{*} \gamma^{5}$

Simplification: 2D Dirac Wilson system

$$
M=\frac{1}{2}\left(\sum_{\mu=1}^{2} \sigma_{\mu}\left(\nabla_{\mu}^{+}+\nabla_{\mu}^{-}\right)+\nabla_{\mu}^{-}-\nabla_{\mu}^{+}\right)+m
$$

* Cov. finite difference operators $\left(U_{\mu} \in U(1)\right)$:

$$
\begin{aligned}
& \left(\nabla_{\mu}^{+} f\right)(x, s)=U_{\mu}(x) f\left(x+e_{\mu}, s\right)-f(x, s) \\
& \left(\nabla_{\mu}^{-} f\right)(x, s)=f(x, s)-U_{\mu}^{*}\left(x-e_{\mu}\right) f\left(x-e_{\mu}, s\right)
\end{aligned}
$$

* $H=\sigma_{3} M=M^{*} \sigma_{3}=H^{*}$, with $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

2D Hermitian Dirac Wilson System $H f=\psi$

$$
\left(\begin{array}{cc}
A & B \\
B^{*} & -A
\end{array}\right)\binom{f(x, 1)}{f(x, 2)}=\binom{\psi_{1}}{\psi_{2}}
$$

Taking $a=\frac{1}{N}$ on a fixed domain and setting $U_{\mu} \equiv 1$ gives

$$
\left(\begin{array}{cc}
A & B \\
B^{*} & -A
\end{array}\right)^{2}=\left(\begin{array}{cc}
\left(m I-\frac{a}{2} \Delta_{a}\right)^{2}-\Delta_{a} & 0 \\
0 & \left(m I-\frac{a}{2} \Delta_{a}\right)^{2}-\Delta_{a}
\end{array}\right)
$$

For $m=0, \mathbf{1} \in \operatorname{Null}(H)$ and $\left(m I-\frac{a}{2} \Delta_{a}\right)^{2}-\Delta_{a}=-\Delta_{a}\left(I-\frac{a^{2}}{4} \Delta_{a}\right)$, with

$$
\sigma\left(-\Delta_{a}\right) \subseteq\left[0, \frac{8}{a^{2}}\right] \quad \text { and } \quad \sigma\left(I-\frac{a^{2}}{4} \Delta_{a}\right) \subseteq[1,3]
$$

General case: Lowest eigenmode of H^{2}

Spectrum of M

$$
m=0
$$

$m=-.1$
$m=-.2$

$$
\beta=3, m_{c r} \approx-.21, n=2 \cdot 16 \cdot 16
$$

Spectrum of H and H^{2}

Free Field

$$
\beta=3
$$

$$
m \approx m_{c r}, n=2 \cdot 16 \cdot 16
$$

MG for lattice fermions circa 2000

* R. Ben-Av, et al, Fermion simulations using parallel transported multigrid, Phys. Lett. B253 (1991), pp. 185-192
* R. Ben-Av, M. Harmatz, S. Solomon, and P. G. Lauwers, Parallel transported multigrid for inverting the dirac operator: Variants of the method and their efficiency, Nucl. Phys. B405 (1993), pp. 623-666
* A. Brandt, Multigrid methods in lattice field computations, Nucl Phys. Proc. Suppl. 26 (1992), pp. 137-180
* R. C. Brower, R. G. Edwards, C. Rebbi, and E. Vicari, Projective multigrid for Wilson fermions, Nucl. Phys. B366 (1991), pp. 689-705
* P. Hasenfratz, Prospects for perfect actions, Nucl. Phys. Proc. Suppl. 63 (1998), pp. 53-58
* Many others ..

$N=64$, Jacobi (Diamond), CG (circle), MG V-cycle (square), W-cycle (star) Brower, et. al., Projective multigrid for Wilson fermions (1991)

Brannick, et. al., Adaptive smoothed aggregation in lattice QCD, Lecture Notes Comp. Sci. Eng., Springer-Verlag, 2006

Extreme simplification: Gauge Laplacian

$$
L=\sum_{\mu} \nabla_{\mu}^{-}-\nabla_{\mu}^{+}+m
$$

* Scaling by $\frac{1}{2(2+m)}$ gives $L=I-\kappa D, \quad D=\left(\begin{array}{cc}0 & D_{e o} \\ D_{o e} & 0\end{array}\right)$ with $L>0$ for $0 \leq \kappa<\kappa_{c r}:=\frac{1}{\lambda_{\max }(D)}$

Presentation Plan

* Model problems - solver challenges
* Dirac Wilson system of QCD
* Schwinger model of QED
* Smoothed Aggregation (A)MG
* Adaptive (A)MG Approaches
* Numerical Results
* Future Work

Method of subspace corrections

* Abstract problem: Find $u \in V$ such that $A u=f, f \in V^{*}, A>0$
* Space decomposition: $V=\sum_{i} V_{i}$

Idea: Correct the error in each subspace by solving $A_{i} e_{i}=r_{i}$ for $i=1: J$

* exactly, if each of the subspaces is small (e.g., multiplicative Schwarz)
* approximately, if the subspaces are of large dimension (e.g., multigrid)

Algorithm MSC With $u \leftarrow u^{0}$, for $i=1: J$ repeat the subspace correction $u \leftarrow u+e_{i}$ where $e_{i} \in V_{i}$ is given by

$$
e_{i}=M_{i}^{-1} \Pi_{i}(f-A u)
$$

* Examples: (1) $V=\mathbb{R}^{n}$ with $V_{i}:=\operatorname{span}\left\{\delta_{i}\right\}$ and $M_{i}=A_{i}=a_{i i}$ gives GaussSeidel; (2) $V_{J} \supset V_{J-1} \supset \ldots \supset V_{1}$ and $M_{i} \approx A_{i}$ results is MG

Let $T_{i}=M_{i}^{-1} A_{i} \pi_{i}$, then $u-u^{\ell}=E_{J}\left(u-u^{\ell-1}\right)$,

$$
E_{J}=\left(I-T_{J}\right)\left(I-T_{J-1}\right) \ldots\left(I-T_{1}\right)
$$

Theorem.[XU AND ZIKATANOV, J. of AMS (2003)] The convergence factor is obtained via $\left\|E_{J}\right\|_{A}^{2}=1-\frac{1}{c_{0}+1}$,

$$
c_{0}=\sup _{\|v\|=1} \inf _{i} v_{i}=v \sum_{i=1}^{J}\left(\bar{T}_{i}^{-1} T_{i}^{*} w_{i}, T_{i}^{*} w_{i}\right)_{A} \text { with } w_{i}=\sum_{j=i}^{J} v_{j}-T_{i}^{-1} v_{i}
$$

where $\bar{T}_{i} \equiv T_{i}^{*}+T_{i}-T_{i}^{*} T_{i} \mathrm{SPD} \Rightarrow c_{0}<\infty$

Application to MG

* For finite element spaces and regular refinement $V_{J} \supset V_{J-1} \supset \ldots \supset V_{1}$. In such settings, under appropriate assumptions, it is straightforward to show that the convergence depends logarithmically on the number of levels
* If nested finite element meshes are not available, then the standard arguments do not apply!
* Motivated by success of MG methods algebraic versions were proposed to handle general problems. Originally for second-order elliptic equations with discontinuous coefficients on unstructured grids
* "Algebraic" stands for the fact that all the tools of the method are constructed solely on the basis of the original matrix A, in a setup phase
* In AMG, the subspaces are built "on the fly", making multilevel theory for the convergence of such algorithms very difficult

AMG estimates $(J=2)$

Two-grid error propagator:

$$
E_{t g}=\left(I-M^{-t} A\right)\left(I-\pi_{A}\right)\left(I-M^{-1} A\right)
$$

with $\pi_{A}:=P\left(P^{t} A P\right)^{-1} P^{t} A$. Two-level convergence factor is obtained via

$$
\left\|E_{t g}\right\|_{A}^{2}=1-\frac{1}{K} ; \quad K(P)=\sup _{v} \frac{\left\|\left(I-\pi_{\bar{M}}\right) v\right\|_{\bar{M}}}{\|v\|_{A}}
$$

where $\bar{M}:=M^{t}\left(M^{t}+M-A\right)^{-1} M$. Analysis of recursive multi-level method depends in addition on stability:

$$
\|P R\|_{A}<\eta ; \quad R P=I_{c}
$$

What does it mean to choose $V_{c}=\operatorname{Range}(P) \subset V$?

Coarse space is constructed automatically within the algorithm, level by level, in a (hopefully) computationally optimal setup procedure which involves

1. Picking a set of coarse variables, i.e., set of indices $\mathcal{N}_{c}=\left\{i_{1}, \ldots, i_{n_{c}}\right\} \rightarrow$ graph theoretic approaches
2. Definiing $V_{c}=\operatorname{span}\left\{\psi_{k}\right\}_{k=1}^{n_{c}}$ such that each ψ_{k} is supported in Ω_{k}, for a vector: $\Omega_{k} \subset\{1, \ldots, n\} \rightarrow$ null space of the system matrix

* Each of the V_{c} (or V_{i} obtained recursively) must satisfy certain properties, related to the convergence of the overall algorithm.

Smoothed Aggregation

* Define strong nbhd. of dof $i \in \Omega=$ $\{1, . ., n\}$ as

$$
N_{i}(\epsilon):=\left\{j \neq i: \epsilon a_{i j}^{2}>a_{i i} a_{j j}\right\}
$$

* Using N_{i} and ind. set algorithm, Ω partitioned into set of disjoint aggregates $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n_{c}}$ such that $\cup_{i=1}^{n_{c}} \mathcal{A}_{i}=$ Ω

$$
\begin{aligned}
& \operatorname{agg}(\Omega, A) \\
& \begin{aligned}
& \text { do } \quad i \in \bar{\Omega} \\
& \text { if } \quad N_{i}(\epsilon) \geq 1 \\
& \mathcal{A}_{j}=N_{i}(\epsilon) \cup\{i\} \\
& \bar{\Omega} \leftarrow \bar{\Omega} \backslash \mathcal{A}_{j} \\
& j \leftarrow j+1 \\
& \text { end if }
\end{aligned} \\
& \text { end do }
\end{aligned}
$$

Smoothed Aggregation MG on a lattice

* On structured lattices we define $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n_{c}}$ using simple geometric blocking, again such that

$$
\cup_{i=1}^{n_{c}} \mathcal{A}_{i}=\Omega
$$

* This fixes the sparsity pattern of P and hence also of $A_{c}=$ $P^{t} A P$

Smoothed Aggregation (A)MG

Given $B=[x], x \in \mathbb{R}^{n}$, and the set of aggregates, $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n_{c}}$

$$
\begin{aligned}
& * n_{l_{c}}=n-l_{n_{c}}+1, l_{i}=\left|\mathcal{A}_{i}\right| \\
& * \tilde{P} \text { scaled: } \tilde{P}^{t} \tilde{P}=I, \tilde{P} x_{c}=x \\
& * P=(I-\tau A) \tilde{P}
\end{aligned}
$$

Multiple vector preserving interpolation

For $B:=\left[x^{(1)}, \ldots, x^{(r)}\right], x^{(i)} \in \mathbb{R}^{n}$,

$$
\tilde{P}=\left(\begin{array}{c|c|c}
X_{1} & & \\
\hline & \vdots & \\
\hline & & X_{n_{c}}
\end{array}\right\}, \begin{gathered}
\} \mathcal{A}_{1} \rightarrow Q_{1} R_{1} \\
\vdots
\end{gathered}
$$

$$
\begin{aligned}
& * X_{i} \in \mathbb{R}^{l_{i} \times r} \\
& * \tilde{P}^{t} \tilde{P}=Q^{t} Q=I \\
& * \tilde{P} B_{c}=\tilde{P} R=B
\end{aligned}
$$

Smoothed Aggregation (A)MG convergence theory

Theorem: (P. Vanek, M. Brezina, J. Mandel, 2001) Assume that there exists a constant, $C_{a}>0$, such that for every $u \in \mathbb{R}^{n}$ and every $l \in\{1,,, L\}$, the following approximation property holds:

$$
\sum_{i} \min _{w \in \mathbb{R}^{r}}\left\|u-B^{1} w\right\|_{\mathcal{A}_{i}^{l}}^{2} \leq C_{a}\|u\|_{A}^{2}
$$

Then

$$
\left\|\tilde{x}-\mathbf{M G}_{1}\left(x, b_{1}\right)\right\|_{A} \leq\left(1-\frac{1}{c(L)}\right)\|\tilde{x}-x\|_{A}
$$

Presentation Plan

* Model problems - solver challenges
* Dirac Wilson system of QCD
* Schwinger model of QED
* Smoothed Aggregation (A)MG
* Adaptive (A)MG Approaches
* Numerical Results
* Future Work

The need for adaptive (A)MG method(s)

For $G_{c} \approx A_{c}^{-1}$ we have the standard error transfer iteration

$$
x \leftarrow\left(I-M^{-t} A\right)\left(I-P G_{c} P^{t} A\right)\left(I-M^{-1} A\right) x
$$

The smoother is typically fixed, e.g. (block) Gauss Seidel. Thus, the sources of potential failure of the above V-cycle are:

* either the interpolation error $x-P x_{c}$ is large, or
* the coarse solver G_{c} cannot handle the coarse component x_{c} of the current level error x

Hence, the need for adapting the MG cycle and thus the coarse-level hierarchy.
To guide the adaptation on the basis of a current algebraically smooth error vector x, represents the main feature of the "adaptive (algebraic) multigrid methods"

The idea of incorporating "smooth vector(s)" in the construction of a method was first introduced by Brandt, McCormick, and Ruge (1983)

Some recent references:
A. Brandt, "Bootstrap AMG", 2001
M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
"Adaptive smoothed aggregation (α SA)," SIAM J. Sci. Comp., 25 (2004), pp 18961920
M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, "Adaptive algebraic multigrid methods," SIAM J. Sci. Comp., 27 (2006), pp 12611286
J. Brannick and L. Zikatanov, "A compatible relaxation and trace minimimization based AMG setup algorithm," DD16 Proceedings (2006)

A basic adaptive (A)MG algorithm

[(T)] For a target $\rho \in(0,1)$ test the method G by applying it to $A x=0$:

$$
\begin{equation*}
x \leftarrow\left(I-M^{-t} A\right)\left(I-P G_{c} P^{t} A\right)\left(I-M^{-1} A\right) x \tag{1}
\end{equation*}
$$

If $x^{t} A x \leq \varrho^{2 \nu} x_{0}^{t} A x_{0} \quad$ break,
else set $P=\left[P, P_{\text {new }}\right], A_{c}=P^{t} A P$
for $k=2: L-1$
(i) set $x=x_{c}, A=A_{k}, A_{c}=A_{k+1}, M=M_{k}, P=P_{k}$, $G_{c}=G_{k+1}$, and update x_{c} using γ applications of (1)
(ii) $P=\left[P, P_{\text {new }}\right], A_{c}=P^{t} A P$
end for
goto step [(T)] to test the new solver
end if

A basic adaptive (A)MG algorithm ...

In summary, based on a existing (A)MG code, using adaptation, one improves the solver quality by changing its components one level at a time

To guarantee improved solver quality after every adaptation step, one needs efficient algorithms for building high-quality updates $P_{\text {new }}$ of P

Today we consider the performance of a complex valued SA-based adaptive MG algorithm

* Brezina, et. al., "Adaptive smoothed aggregation", 2004
* Brannick, et. al., "Adaptive smoothed aggregation in lattice QCD", 2006

Adaptive SA Setup

$\underline{\text { Relation to PCG }}$

* A simple version of the adpative procedure mimics PCG
* Given e_{0} relax on $A e=0$ such that $e_{1}=S e_{0}$
* Define $P=\left[e_{1}\right]$ and perform two-level MG correction:

$$
e_{1} \leftarrow\left(I-\pi_{1}\right) S e_{0}, \quad \pi_{1}=P_{1}\left(P_{1}^{t} A P_{1}\right)^{-1} P_{1}^{t} A
$$

* At k th step define $P_{k}=\left[P_{k-1}, e_{k}\right]: e_{k}=\left(I-\pi_{k}\right) S e_{0}$. Then, π_{k} is the A-orthogonal projector onto:

$$
\mathcal{K}_{k}=\left\{S e_{0}, S^{2} e_{0}, \ldots, S^{k} e_{0}\right\}
$$

Presentation Plan

* Model problems - solver challenges
* Dirac Wilson system of QCD
* Schwinger model of QED
* Smoothed Aggregation (A)MG
* Adaptive (A)MG Approaches
* Numerical Results
* Future Work

Complex valued adaptive SA solver (M. Clark)

* Variational MG: $A_{c}=\left(P_{c}^{f}\right)^{t} A P_{c}^{f}, P_{c}^{f}=S_{f} \tilde{P}_{c}^{f}$
* Partition fine-level dofs into aggregates
* Given B_{f}, construct \tilde{P}_{c}^{f} and B_{c} such that $\tilde{P}_{c}^{f} B_{c}=B_{f}$
* B_{f} is computed using a multilevel power method based on error propagation operator
* Rely on SA framework to use B_{f} : in contrast to CG, representative vectors are localized over the aggregates to approximate much larger subspace

Solver components / performance measures

* For all tests we use a point source as rhs and report iteration counts needed to reduce relative residual by 10^{8}
* Smoothers: SOR with $\omega=1.05$ and ω-Jacobi with $\omega=.6$
* The cost of a single $V(\nu, \mu)$-cycle is approximately $\nu \cdot \mu \cdot G C \cdot O C$ CG iterations, where

$$
G C:=\frac{\sum_{i=1}^{J} n_{c, i}}{n} \text { and } \quad O C:=\frac{\sum_{i=1}^{J} n n z\left(A_{i}\right)}{n n z(A)}
$$

Gauge Laplacian: ω-Jacobi $(\omega=.75), G C=1.1 \quad O C=1.1,1.5,2.1$

ω-Jacobi $(\omega=.75), G C=1.2(1.3), O C=2.1(2.5)$

Gauge Laplacian

* Ritz values for $N=128, \beta=1$, and $m=0$

$$
\begin{aligned}
& \lambda_{1}=2.1645416870664 e-01 \\
& \lambda_{2}=2.2349797163528 e-01 \\
& \lambda_{3}=2.2360679843404 e-01 \\
& \lambda_{4}=2.3001814768025 e-01
\end{aligned}
$$

* Iteration counts needed to reduce relative residual by 10^{8} for aSA-PCG, $V(2,2)$ cycles with SOR , $n v e c=1,2 \times 2$ blocking, $G C=1.3, O C=2.4$

N / m_{0}	$1.0 e-08$	$1.0 e-04$	$1.0 e-02$	$1.0 e-01$
32	8	7	6	5
64	13	13	10	7
128	$14(425)$	$13(343)$	$11(232)$	$8(107)$
256	15	15	13	8
512	15	15	13	9

Gauge Laplacian

* Ritz values for $N=128, \beta=1$, and $m=0$

$$
\begin{aligned}
& \lambda_{1}=2.1645416870664 e-01 \\
& \lambda_{2}=2.2349797163528 e-01 \\
& \lambda_{3}=2.2360679843404 e-01 \\
& \lambda_{4}=2.3001814768025 e-01
\end{aligned}
$$

* Iteration counts needed to reduce relative residual by 10^{8} for aSA-PCG, $V(2,2)$ cycles with SOR, nvec $=1,4 \times 4$ blocking, $G C=1.1, O C=1.1$

N / m_{0}	$1.0 e-08$	$1.0 e-04$	$1.0 e-02$	$1.0 e-01$
32	8	7	6	5
64	13	13	10	7
128	$22(425)$	$20(343)$	$18(232)$	$12(107)$
256	15	15	13	8
512	15	15	13	9

Gauge Laplacian

* Ritz values for $N=128, \beta=1$, and $m=0$

$$
\begin{aligned}
& \lambda_{1}=2.1645416870664 e-01 \\
& \lambda_{2}=2.2349797163528 e-01 \\
& \lambda_{3}=2.2360679843404 e-01 \\
& \lambda_{4}=2.3001814768025 e-01
\end{aligned}
$$

* Iteration counts needed to reduce relative residual by 10^{8} for aSA-PCG, $V(1,1)$ cycles with SOR, nvec $=1,4 \times 4$ blocking, $G C=1.1, O C=1.1$

N / m_{0}	$1.0 e-08$	$1.0 e-04$	$1.0 e-02$	$1.0 e-01$
32	8	7	6	5
64	13	13	10	7
128	$35(425)$	$27(343)$	$23(232)$	$17(107)$
256	15	15	13	8
512	15	15	13	9

Gauge Laplacian

* Iteration counts needed to reduce relative residual by 10^{8} for aSA-PCG, $V(1,1)$-cycles with SOR , $n v e c=1,4 \times 4$ blocking, $G C=1.1, O C=1.1$

m_{0}	$1.0 e-08$	$1.0 e-04$	$1.0 e-02$	$1.0 e-01$
cg its	435	343	232	107
setup - MVs	277	186	92	15
aSA-PCG its	32	24	18	10

* Approximate setup costs for $m_{0}=1.0 e-08$

setup - MVs	411	277	167	123	84
aSA-PCG its	26	32	36	49	51
aSA its	31	38	59	65	78

Schwinger model

* Ritz values for $N=64, \beta=1, m=0$, top. charge $=1$

$$
\begin{array}{rrr}
\lambda_{1} & 2.4072960956544 e-01 & 7.4457724811804 e-17 \\
\lambda_{2} & 2.7543643782929 e-01 & -1.1102230246252 e-16 \\
\lambda_{3} & 2.7644821995514 e-01 & 6.0828034281699 e-03 \\
\lambda_{4} & 2.7644821995513 e-01 & -6.0828034281690 e-03
\end{array}
$$

* Iteration counts needed to reduce relative residual by 10^{8} for aSA-PCG applied to $H^{2}, V(2,2)$-cycles, $n v e c=1,2 \times 2$ blocking, $G C=1.2, O C=2.7$

setup $/ m_{0}$	$1.0 e-04$	$1.0 e-03$	$1.0 e-02$	$1.0 e-01$
917	34	32	20	12
1361	28	27	16	7
1654	$23(2113)$	$20(1058)$	$17(336)$	$5(106)$

Schwinger model

* Ritz values for $N=64, \beta=10, m=0$, top. charge $=0$

$$
\begin{array}{llr}
\lambda_{1} & 5.2306384031557 e-02 & -2.3671180635050 e-02 \\
\lambda_{2} & 5.2306384031563 e-02 & 2.3671180635057 e-02 \\
\lambda_{3} & 5.2574243587467 e-02 & -7.9255143077699 e-03 \\
\lambda_{4} & 5.2574243587460 e-02 & 7.9255143077641 e-03
\end{array}
$$

* Iteration counts needed to reduce relative residual by 10^{8} for aSA-PCG applied to $H^{2}, V(2,2)$-cycles, $n v e c=1,2 \times 2$ blocking, $G C=1.2, O C=2.7$

setup $/ m_{0}$	$1.0 e-04$	$1.0 e-03$	$1.0 e-02$	$1.0 e-01$
316	34	23	14	10
504	32	23	15	10
1114	$22(1305)$	$22(968)$	$15(329)$	$10(112)$

Concluding Remarks

* Several difficulties must be addressed in designing an AMG method for QCD systems
* Adaptive MG methodology naturally handles these difficulties
* The adaptive setup is designed to expose the oscillatory low energy modes
* Construction of the sequence of coarse problems is based on these computed low energy modes
* Key issue now is complexity

Current and future works

* Various complex-valued adaptive AMG test codes
* In the Classical AMG setting by MacLachlan and Osterlee
* In SA setting by M. Clark in serial and by A. Bessen in parallel
* Systems MG: block smoothers
* MG for $H f=\phi$
* Preconditioners based on Gauge Laplacian
* Parallel implementation

Current and future works

* Various complex-valued adaptive AMG test codes
* In the Classical AMG setting by MacLachlan and Osterlee * In SA setting by M. Clark in serial and by A. Bessen in parallel
* Systems MG: block smoothers
* MG for $H f=\phi$
* Preconditioners based on Gauge Laplacian
* Parallel implementation

"Ideal" interpolation operator

Given R, let

$$
K_{*}=\inf _{P} \sup _{v} \frac{\|(I-P R) v\|_{\bar{M}}^{2}}{\|v\|_{A}^{2}}
$$

The minimum and minimizer are given by

$$
K_{*}=\frac{1}{\lambda_{\min }\left(\overline{\left.M_{f f}^{-1} A_{f f}\right)}\right.} \quad \text { and } \quad P_{*}=\left[\begin{array}{c}
-A_{f f}^{-1} A_{f c} \\
I_{c}
\end{array}\right]
$$

Thus, if K_{*} is uniformly bounded, then there exists a P, namely P_{*}, such that the two-level method is uniformly convergent

Trace minimization

* Assume \mathcal{N}_{c} and $\left\{\Omega_{i}\right\}_{i=1}^{n_{c}}$ are given. Then

Each Ω_{i} contains exactly one index from \mathcal{N}_{c}

* Consider the following affine subspaces of $\mathbb{R}^{n \times n_{c}}$:

$$
\begin{aligned}
\mathcal{X} & =\left\{Q: Q=\left[\begin{array}{c}
W \\
I_{c}
\end{array}\right], W \in \mathbb{R}^{n_{f} \times n_{c}}\right\} \\
\mathcal{X}_{H} & =\left\{Q: Q \in \mathcal{X}, Q_{j i}=0 \text { for all } j \notin \Omega_{i}, Q \mathbf{1}_{c}=e\right\}
\end{aligned}
$$

Here, e is an arbitrary nonzero element of $\mathbb{R}^{n}: e=\left[\begin{array}{c}* \\ \mathbf{1}_{c}\end{array}\right]$

Definition of P

* Let $I_{i} \in \mathbb{R}^{n \times n_{i}}$ be the characteristic function over Ω_{i} and define $A_{i}=I_{i}^{T} A I_{i}$.
* Consider

$$
P=\arg \min J(Q):=\arg \min \operatorname{trace}\left(Q^{T} A Q\right), \quad Q \in \mathcal{X}_{H}
$$

* The i-th column of the unique solution to the minimization problem is given by

$$
[P]_{i}=I_{i} A_{i}^{-1} I_{i}^{T} M_{a} e, \quad M_{a}^{-1}=\sum_{i=1}^{n_{c}} I_{i} A_{i}^{-1} I_{i}^{T}
$$

On the best approximation to P_{*} in the trace norm

The matrix M_{a}^{-1} is the standard additive Schwarz preconditioner for A where the n_{c} blocks are defined in terms of $\left\{\Omega_{i}\right\}_{i=1}^{n_{c}}$. Letting each $\Omega_{i}=\left\{1: n_{f}\right\}$ and $e=P_{*} \mathbf{1}_{c}$ we have that
$J\left(P_{*}\right)=\operatorname{trace}(\mathcal{S}(A))$ and

$$
\begin{aligned}
\operatorname{trace}(\mathcal{S}(A)) & =\sum_{i=1}^{n_{c}}\left(\mathcal{S}(A) e_{i}, e_{i}\right)=\sum_{i=1}^{n_{c}} \inf _{v: v_{c}=e_{i}}(A v, v) \\
& \leq \sum_{i=1}^{n_{c}}\left(A P e_{i}, P e_{i}\right)=\operatorname{trace}\left(P^{T} A P\right)
\end{aligned}
$$

The best approximation property

Theorem. Let $J(\cdot)=\| \| \cdot \cdot \|_{A}$ and P be the unique solution of the trace-minimization problem. Then

$$
\|\mid\| P_{*}-P\| \|_{A}=\min _{Q \in \mathcal{X}_{H}}\left\|P_{*}-Q\right\| \|_{A}
$$

Proof. Let $Q \in \mathcal{X}_{H}$ be arbitrary. Since, $P_{*}^{T} A\left(Q-P_{*}\right)=0$, we have

$$
J(Q)=J\left(P_{*}+\left(Q-P_{*}\right)\right)=\operatorname{trace}(\mathcal{S}(A))+\| \| P_{*}-Q\| \|_{A}^{2}
$$

The optimal choice of e

* By direct computation we have that $J(P)=\left(M_{a} e, e\right)$, implying

$$
\left\|\left\|P_{*}-P\right\|_{A}^{2}=\left(M_{a} e, e\right)-\operatorname{trace}(\mathcal{S}(A))\right.
$$

* We can now take the minimum with respect to e on both sides and arrive at

$$
\left\|P_{*}-P\right\| \|_{A}^{2}=\operatorname{trace}\left[\mathcal{S}\left(M_{a}\right)-\mathcal{S}(A)\right]
$$

where the minimizer is $e=\left[\begin{array}{c}-M_{a, f} f_{c} M_{a, f c} \mathbf{1}_{c} \\ \mathbf{1}_{c}\end{array}\right]$

