

Generating QCD Gauge Configurations

The Fourth International Workshop on Numerical Analysis and Lattice QCD

Yale University

Michael Clark Boston University

Talk Outline

- Introduction
- Hybrid Monte Carlo
- Algorithm Improvement
- "Non-local" Algorithms
- Conclusion

Introduction

• Lattice QCD path integral

$$\langle \Omega \rangle = \frac{1}{Z} \int [dU] e^{-S_{g}(U)} [\det \mathcal{M}(U)]^{\alpha} \Omega(U)$$

 $\alpha = \frac{N_f}{2} \left(\frac{N_f}{4}\right)$ for Wilson (staggered) fermions, $\mathcal{M} = M^{\dagger}M$

- $10^8 10^9$ degrees of freedom \Rightarrow Monte Carlo integration
- Interpret $e^{-S_{\rm g}} \det \mathcal{M}^{\alpha}$ as a Boltzmann weight, and use importance sampling

$$\langle \Omega
angle pprox rac{1}{N} \sum_{i=1}^{N} \Omega(U_i)$$

Quenched Approximation

- Fermion determinant extremely non-local object
- Quenched approximation: set $\det \mathcal{M}=1$
- Gauge action local: over relaxed heatbath algorithms very efficient
- Just plain wrong!

 \Rightarrow Must include dynamical fermions to obtain QCD

The HMC Algorithm (Duane et al)

- De facto algorithm for including dynamical fermions
- Rewrite determinant in terms of pseudo-fermions

$$\det \mathcal{M} = \int D\phi^{\dagger} D\phi \, e^{-\phi^{\dagger} \mathcal{M}^{-1} \phi} = \int D\phi^{\dagger} D\phi \, e^{-S_{\mathsf{f}}}$$

- Need global updates since psuedofermion action is non-local
- \bullet Introduce fictitious momentum field π and define a Hamiltonian

$$H = \frac{1}{2} \operatorname{tr} \pi^2 + S_{g} + S_{f} = T + S$$

- Integrate Hamilton's equations to propose a new configuration
- Global Accept / Reject to obtain desired probability distribution

$$P(U,\phi) = \frac{1}{Z}e^{-S_{g}-S_{f}}$$

The HMC Algorithm (Duane et al)

- Each update consists of
 - Hybrid Molecular Dynamics Trajectory
 - * Momentum refreshment heatbath $(P(\pi) \propto e^{-\pi^* \pi/2})$.
 - * Pseudo-fermion heatbath ($\phi \propto M^{\dagger}\xi$, where $P(\xi) \propto e^{-\xi^{*}\xi}$).
 - * MD trajectory with $\tau/\delta\tau$ steps.
 - Metropolis Acceptance Test $P_{acc} = min(1, e^{-\delta H})$

Molecular Dynamics

- Hamilton's equations $\frac{dU}{d\tau} = \frac{dT}{d\pi} = \pi$ and $\frac{d\pi}{d\tau} = -\frac{dS}{dU} = F$
- \bullet Must discretize the "fictious time" τ and integrate numerically
- \bullet Define integrators in terms of evolution operators Q and P

$$Q \equiv \frac{dT}{d\pi} \frac{\partial}{\partial U} \quad \text{with} \quad e^{\delta \tau Q} : f(U, \pi) \to f(U + \delta \tau T'(\pi), \pi)$$
$$P \equiv -\frac{dS}{dU} \frac{\partial}{\partial \pi} \quad \text{with} \quad e^{\delta \tau P} : f(U, \pi) \to f(U, \pi - \delta \tau S'(U))$$

• Metropolis requires Detailed Balance

- Integration must be reversible and area preserving

- Use Symmetric Symplectic Integrators, e.g., leapfrog

$$U(\delta\tau)^{\tau/dt} = \left(e^{\delta\tau P/2}e^{\delta\tau Q}e^{\delta\tau P/2}\right)^{\tau/\delta\tau} + O(\delta\tau^2)$$

Molecular Dynamics Forces

- Pure Gauge Force $(\frac{dS_g}{dU})$ local analytic quantity - CHEAP
- Fermion force

$$\frac{dS_{f}}{dU} = \frac{d}{dU}\phi^{\dagger}\mathcal{M}^{-1}\phi = -\phi^{\dagger}\mathcal{M}^{-1}\frac{d\mathcal{M}}{dU}\mathcal{M}^{-1}\phi$$

- Each update to the momentum requires solution to $\mathcal{M}\chi=\phi$
- Generally calculated using a Krylov solver, e.g., CG
- EXPENSIVE

Cost of HMC

- Condition number blows up as $m \to 0$
- Force $\propto 1/m$, requires $\delta au \to 0$ to maintain acceptance rate
- Also, as $m \rightarrow 0$, correlation lengths diverge
- $C \propto \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-6} L^5 a^{-7}$ CP-PACS and JLQCD, 2002

 \Rightarrow Require huge computers OR better algorithms

Chronological Inverter

- Solution $\chi(\tau) = \mathcal{M}(\tau)^{-1}\phi$ is a smooth function
- Idea: Use previous solutions to act as an initial guess
- Minimize over the space of previous solutions (Broweret al) : for

$$x_0 = \sum_i c_i \mathcal{M} \chi_i$$

solve

$$\chi_j^{\dagger}\phi = \sum_i c_i \chi_j^{\dagger} \mathcal{M} \chi_i$$

- Requires high precision solutions to maintain reversibility
- Gain around a factor of 2

Higher Order Integrator

• Potential for gain from using $O(\delta \tau^4)$ integrator, e.g., Campostrini

$$U(\delta\tau)^{\tau/dt} = \left(e^{\delta\tau \,\epsilon P/2} e^{\delta\tau \,\epsilon Q} e^{\delta\tau \,(1-\sigma)P/2} e^{-\delta\tau \,\epsilon\sigma Q} e^{\delta\tau \,(1-\sigma)P/2} e^{\delta\tau \,\epsilon Q} e^{\delta\tau \,\epsilon P/2}\right)^{\tau/\delta\tau} + O(\delta\tau^4)$$

- Better volume scaling $V^{9/8}$ vs. $V^{5/4}$
- Constructed from sub-leapfrog steps with $\delta\tau^{sub} > \delta\tau$
- Sub-leapfrog integrator can go unstable much sooner than $\delta\tau$ suggests (Joó et al)
- Higher order integrators are very unstable
- $O(\delta \tau^2)$ usually found to be optimal

Multiple Timescale Integration (Sexton/Weingarten, 1992)

- For Hamiltonians of the form $H = T + S_1 + S_2$
- Integrate S_1 and S_2 force contributions on different timescales

$$U(\delta\tau)^{\tau/\delta\tau} = \left(\left(e^{\delta\tau P_1/4m} e^{\delta\tau Q/2m} e^{\delta\tau P_1/4m} \right)^m e^{\delta\tau P_2} \right)^m \left(e^{\delta\tau P_1/4m} e^{\delta\tau Q/2m} e^{\delta\tau P_1/4m} \right)^m \right)^{\tau/\delta\tau}$$

- Two separate timescales $\delta\tau^{S_1}=\delta\tau/m$, $\delta\tau^{S_2}=\delta\tau$
- Large and cheap force = P_1 , Small and expensive force = P_2 ,
- Naïve partitioning: $S_1 = S_g, S_2 = S_f$ fails as $m \to 0$
- Can extend this recursively for N timescales $H = T + S_1 + \ldots + S_N$
- Great idea, but dormant for 10 years...

Multiple Pseudofermions with Mass Preconditioning

• Mass-precondition the fermion determinant (Hasenbusch)

$$\det(M^{\dagger}M) = \det(\hat{M}^{\dagger}\hat{M}) \det\left(\hat{M}(M^{\dagger}M)^{-1}\hat{M}^{\dagger}\right)$$

with $m(\hat{M}) > m(M)$

- Tune $\kappa(\hat{M}^{\dagger}\hat{M}) \approx \kappa(\hat{M}(M^{\dagger}M)^{-1}M^{\dagger}) \approx \sqrt{\kappa(M^{\dagger}M)}$ (Hasenbusch-Jansen)
- Why does this work?
 - Better sampling of Gaussion integral using multiple pseudo-fermions
 - This reduces fluctuations in the fermion force
 - Fermion force $F\propto\kappa^{\nu}$
- Factor 2 improvement through $\delta\tau$ increase
- Use more than one dummy operator
- Gain increases as $m_{\rm I} \rightarrow 0$

Multi-timescale Mass Preconditioning (QCDSF, Urbach et al)

- Tune dummy operators so that most expensive (preconditioned) force contributes the least
- Use multi-timescale integrator ($S_1 = S_g$, $S_2 = \hat{S}$, $S_3 = S_f$)
- Factor 10 improvement at light quark mass

Domain Decomposition (Lüscher)

- Can rewrite the Dirac operator $M = \begin{pmatrix} D_{\Omega} & D_{\delta\Omega} \\ D_{\delta\Omega'} & D_{\Omega'} \end{pmatrix}$
- D_{Ω} $(D_{\Omega'})$ is Dirac operator on black (white) blocks with Direchlet boundaries
- $D_{\delta\Omega}$ and $D_{\delta\Omega'}$ is the Dirac operator connecting these blocks
- Rewrite determinant

$$\det M = \det \begin{pmatrix} D_{\Omega} & 0\\ 0 & D_{\Omega'} \end{pmatrix} \det \begin{pmatrix} D_{\Omega} & D_{\delta\Omega} \\ D_{\delta\Omega'} & D_{\Omega'} \end{pmatrix} \begin{pmatrix} D_{\Omega}^{-1} & 0\\ 0 & D_{\Omega'}^{-1} \end{pmatrix}$$

- Separation into large and cheap, and small but expensive ⇒ multi timescale integrator
- Large speed up over naïve algorithm

Determinant Preconditioning is Key

- Other methods
 - U.V. Filtering (de Forcrand)
 - Polynomial filtering (Peardon and Sexton)
 - Multistep stochastic correction (see talk by Enno)
- All improvements rely on determinant preconditioning

Non-local Actions

- Strange quark inclusion requires det $\mathcal{M}^{\frac{1}{2}}$
- Finite temperature calculations typically use staggered quarks
 - Remnant chiral symmetry important here
 - Non-local action: det \mathcal{M}^{α} , $\alpha = \frac{1}{2}, \frac{1}{4}$
- HMC cannot be applied for these cases
- Inexact algorithms traditionally used
- Is using exact algorithms more expensive?
- Are the improvements in "Local actions" applicable here?

The R Algorithm (Gottlieb et al)

• Rewrite fermionic determinant:

 $\det \mathcal{M}^{\alpha} = \exp\left(\alpha \operatorname{tr} \ln \mathcal{M}\right) = \exp\left(-S_{\text{eff}}\right)$

- Integrate Hamilton's equations as before
- Use noisy estimator ξ for trace \equiv pseudo-fermion force
- Leading order error term $O(\delta \tau)!$
- Recover $O(\delta \tau^2)$ with N_f dependent ξ updating
 - Non-reversible
 - Jacobian \neq 1
- Cannot include Metropolis acceptance test
 ⇒ Algorithm is inexact
- Naïve cost = HMC, but requires extrapolation to zero stepsize
- Stepsize rule of thumb $\delta au \sim rac{2}{3}m_{
 m I}$

Polynomial Hybrid Monte Carlo (de Forcrand-Takaishi, Frezzotti-Jansen)

• Write in pseudo-fermion notation

$$det \mathcal{M}^{\alpha} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}\mathcal{M}^{-\alpha}\psi} \\ \approx \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}P(\mathcal{M})\psi},$$

where $P(\mathcal{M})$ is valid over spectrum

- Pseudo-fermion heatbath easily realised $P(\mathcal{M}) = p^{\dagger}(\mathcal{M})p(\mathcal{M})$
- Use standard MD leapfrog \Rightarrow exact
- Generally polynomial degree $m > N_{\text{iter}} \text{ CG}$ iterations
- Use low degree polynomial
 - Reweight acceptance test or observable
- Use high degree polynomial
 - $\alpha \neq$ 1 derivative uses Leibniz rule \Rightarrow Memory, rounding

- Generated using Remez algorithm
- Real non-degenerate roots (poles are always +ve)
- Partial fractions $r(x) = \sum_{k=1}^{m} \frac{\alpha_k}{x + \beta_k}$
- Evaluate using multi-shift solver
- Numerically stable (α_k have same sign)

Rational Hybrid Monte Carlo (Clark-Kennedy)

• Rewrite fermionic determinant

$$\det \mathcal{M}^{\alpha} = \int \mathcal{D}\bar{\phi}\mathcal{D}\phi e^{-\bar{\phi}\mathcal{M}^{-\alpha}\phi}$$
$$\approx \int \mathcal{D}\bar{\phi}\mathcal{D}\phi e^{-\bar{\phi}r^{2}(\mathcal{M})\phi},$$

with $r(x) = x^{-\alpha/2}$

- Precision is cheap: Conventional Metropolis
- RHMC:
 - Hybrid Molecular Dynamics Trajectory
 - * Momentum refreshment heatbath $(P(\pi) \propto e^{-\pi^* \pi/2})$.
 - * Pseudo-fermion heatbath ($\phi \propto r(\mathcal{M})^{-1}\xi$, where $P(\xi) \propto e^{-\xi^*\xi}$).
 - * MD trajectory with $\tau/\delta\tau$ steps.
 - Metropolis Acceptance Test $P_{acc} = min(1, e^{-\delta H})$

Rational Hybrid Monte Carlo (Clark-Kennedy)

- MD trajectory
 - Double inversion from $r^2(\mathcal{M})$
 - Use low degree approx $\bar{r}\approx \mathcal{M}^{-\alpha}\approx r^2$
 - Pseudo-fermion force

$$S'_{\text{pf}} = -\sum_{i=1}^{\bar{m}} \bar{\alpha}_i \phi^{\dagger} (\mathcal{M} + \bar{\beta}_i)^{-1} \mathcal{M}' (\mathcal{M} + \bar{\beta}_i)^{-1} \phi.$$

- CG cost per trajectory \approx HMC
 - One extra inversion required for heatbath

Exact vs. Inexact (RBC-Bielefeld)

- P4 staggered fermions
- RHMC allows an O(10) increase in stepsize
- Speedup greater as $m_{\rm I} \rightarrow 0$

Exact vs. Inexact (de Forcrand-Philipsen)

(Naïve Staggered Fermions, $N_f = 3$, $V = 8^34$)

- Results:
 - Binder cumulant increases
 - Stepsize extrapolation is vital for R algorithm
 - 25% reduction in critical quark mass at $\delta \tau^R = \frac{1}{2}m_{\rm I}$
 - 20% change in renormalised quark mass
- Conclusion: "an exact algorithm is mandatory"

Multiple Pseudofermions with RHMC (Clark-Kennedy)

• Rewrite determinant

$$\det \mathcal{M} = [\det \mathcal{M}^{1/n}]^n \\ \propto \prod_{j=1}^n d\phi_j \, d\phi_j^{\dagger} \exp\left(-\phi_j^{\dagger} \mathcal{M}^{-1/n} \phi_j\right),$$

- So called n^{th} root trick
- Speedup through $\delta \tau$ increase
- No dummy mass parameters to tune \Rightarrow easy to increase n
- Single fermion timescale

Integrator Instability (Clark-Kennedy)

(Staggered fermions, $V = 16^4$, $\beta = 5.6$, $N_{f} = 2$, m = 0.005)

- With n = 1 integrator breaks down as $\delta \tau$ is increased
- Instability "tickled" by low fermion modes $\sim O(\frac{1}{m_1})$ (Joó et al)
- Higher order integrators are more ticklish
- What happens with multiple pseudofermions?

Integrator Instability (Clark-Kennedy)

(Staggered fermions, $V = 16^4$, $\beta = 5.6$, $N_f = 2$, m = 0.005)

- Removes instability in the integrator!
- Why does this work? Lowest modes now $O(\frac{1}{m_{I}})^{1/n}$
- Force now bulk dominated
- Higher order integrators now beneficial

Who's the fastest of them all? ($N_f = 2$ Wilson)

- Compare multi-timescale mass preconditioning and high order RHMC
- Use popular testing parameters ($V = 24^3.32$, $\beta = 5.6$, Plaquette + Wilson fermions)
- Use measure $C = \tau_{\text{int}}^{\text{plag}} N_{\text{mv}} . 10^{-4}$

	C		
κ	RHMC	Urbach et al	Orth et al
0.15750	9.6	9.0	19.1
0.15800	29.9 <mark>*</mark>	17.4	128
0.15825	52.5 <mark>*</mark>	56.5	_

*Using 4MN5 fourth order integrator (de Forcrand and Takaishi)

- RHMC similar in cost to mass preconditioning
- Look at integrator stability with mass preconditioning
 - Gain from higher order integrators also?

2+1 QCD

• e.g. Domain Wall 2+1 flavour determinant

$$\left(\frac{\det M_{\mathsf{I}}^{\dagger} M_{\mathsf{I}}}{\det M_{\mathsf{pv}}^{\dagger} M_{\mathsf{pv}}} \right) \left(\frac{\det M_{\mathsf{s}}^{\dagger} M_{\mathsf{s}}}{\det M_{\mathsf{pv}}^{\dagger} M_{\mathsf{pv}}} \right)^{1/2} = \left(\frac{\det M_{\mathsf{I}}^{\dagger} M_{\mathsf{I}}}{\det M_{\mathsf{s}}^{\dagger} M_{\mathsf{s}}} \right) \left(\frac{\det M_{\mathsf{s}}^{\dagger} M_{\mathsf{s}}}{\det M_{\mathsf{pv}}^{\dagger} M_{\mathsf{pv}}} \right)^{3/2}$$

- Mass Precondition using the strange quark
- Use n^{th} root trick for triple strange
- NOT mutually exclusive improvements
- Use multi-timescale integrator (gauge, triple strange, light)
- Light quark mass constitutes around 10% CG cost
- Cost dependence on mass comes mostly from autocorrelation

Berlin Wall Plot

- Compare the cost of fermion formulations and/or algorithms
 - $N_f = 2 + 1$ DWF RHMC (RBC-UKQCD)
 - $N_f = 2$ Mass preconditioned Wilson (Urbach *et al*)
 - $N_{\rm f} = 2$ Mass preconditioned Clover (QCDSF)
 - $N_f = 2 + 1$ Mass preconditioned Clover + RHMC

(Wuppertal-Jülich)

- $N_{\rm f} = 2$ Mass preconditioned Twisted Mass (ETM)
- $N_{\rm f} = 2 + 1$ AsqTad R (MILC)
- $N_f = 2 + 1$ AsqTad RHMC (Clark-Kennedy)
- All data scaled to $V = 24^3 \times 40$, a = 0.08
- Box is too small and too coarse

-31- Yale University

-32- Yale University

-33- Yale University

Conclusions

- After 20 years HMC is still the best dynamical algorithm
- The last 5 years has seen an explosion in HMC improvement
- Determinant preconditioning is the key behind all improvement
- Non-local actions are no problem
- Pick and mix the most appropriate algorithm
 - Multiple time scale mass preconditioning
 - Domain decomposition
 - n^{th} rootary with RHMC
- HMC cost is now $C \propto \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-2} L^5 a^{-6}$ (Lüscher)
- Physical point no longer a pipedream
- Further improvement must come from autocorrelation?

