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Introduction

• Lattice QCD path integral

〈Ω〉 =
1

Z

∫
[dU ]e−Sg(U)[detM(U)]αΩ(U)

α =
Nf
2 (

Nf
4 ) for Wilson (staggered) fermions, M = M†M

• 108 − 109 degrees of freedom ⇒ Monte Carlo integration

• Interpret e−Sg detMα as a Boltzmann weight, and use

importance sampling

〈Ω〉 ≈
1

N

N∑
i=1

Ω(Ui)
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Quenched Approximation
• Fermion determinant extremely non-local object
• Quenched approximation: set detM = 1
• Gauge action local: over relaxed heatbath algorithms very

efficient
• Just plain wrong!

⇒ Must include dynamical fermions to obtain QCD
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The HMC Algorithm (Duane et al)

• De facto algorithm for including dynamical fermions

• Rewrite determinant in terms of pseudo-fermions

detM =
∫
Dφ†Dφe−φ

†M−1φ =
∫
Dφ†Dφe−Sf

• Need global updates since psuedofermion action is non-local

• Introduce fictitious momentum field π and define a Hamiltonian

H =
1

2
tr π2 + Sg + Sf = T + S

• Integrate Hamilton’s equations to propose a new configuration

• Global Accept / Reject to obtain desired probability distribution

P (U, φ) =
1

Z
e−Sg−Sf

-5- Yale University



Generating QCD Configurations

The HMC Algorithm (Duane et al)

• Each update consists of

– Hybrid Molecular Dynamics Trajectory

∗ Momentum refreshment heatbath (P (π) ∝ e−π
∗π/2).

∗ Pseudo-fermion heatbath (φ ∝M†ξ, where P (ξ) ∝ e−ξ
∗ξ).

∗ MD trajectory with τ/δτ steps.

– Metropolis Acceptance Test Pacc = min(1, e−δH)
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Molecular Dynamics

• Hamilton’s equations dU
dτ = dT

dπ = π and dπ
dτ = −dS

dU = F

• Must discretize the “fictious time” τ and integrate numerically

• Define integrators in terms of evolution operators Q and P

Q ≡
dT

dπ

∂

∂U
with eδτQ : f(U, π) → f(U + δτT ′(π), π)

P ≡ −
dS

dU

∂

∂π
with eδτP : f(U, π) → f(U, π − δτS′(U))

• Metropolis requires Detailed Balance

– Integration must be reversible and area preserving

– Use Symmetric Symplectic Integrators, e.g., leapfrog

U(δτ)τ/dt =
(
eδτ P/2eδτ Qeδτ P/2

)τ/δτ
+O(δτ2)
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Molecular Dynamics Forces

• Pure Gauge Force (dSg
dU ) local analytic quantity

– CHEAP

• Fermion force

dSf

dU
=

d

dU
φ†M−1φ = −φ†M−1dM

dU
M−1φ

– Each update to the momentum requires solution to

Mχ = φ

– Generally calculated using a Krylov solver, e.g., CG

– EXPENSIVE
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Cost of HMC

• Condition number blows up as

m→ 0

• Force ∝ 1/m, requires δτ → 0 to

maintain acceptance rate

• Also, as m → 0, correlation

lengths diverge

• C ∝
(
mπ
mρ

)−6
L5a−7

CP-PACS and JLQCD, 2002

⇒ Require huge computers OR better algorithms
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Chronological Inverter

• Solution χ(τ) = M(τ)−1φ is a smooth function

• Idea: Use previous solutions to act as an initial guess

• Minimize over the space of previous solutions (Broweret al) :

for

x0 =
∑
i

ciMχi

solve

χ
†
jφ =

∑
i

ciχ
†
jMχi

• Requires high precision solutions to maintain reversibility

• Gain around a factor of 2
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Higher Order Integrator

• Potential for gain from using O(δτ4) integrator, e.g.,

Campostrini

U(δτ)τ/dt =
(
eδτ εP/2eδτ εQeδτ (1−σ)P/2e−δτ εσQ

eδτ (1−σ)P/2eδτ εQeδτ εP/2
)τ/δτ

+O(δτ4)

• Better volume scaling V 9/8 vs. V 5/4

• Constructed from sub-leapfrog steps with δτsub > δτ

• Sub-leapfrog integrator can go unstable much sooner than δτ

suggests (Joó et al)

• Higher order integrators are very unstable

• O(δτ2) usually found to be optimal
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Multiple Timescale Integration (Sexton/Weingarten, 1992)

• For Hamiltonians of the form H = T + S1 + S2

• Integrate S1 and S2 force contributions on different timescales

U(δτ)τ/δτ =
((
eδτ P1/4meδτ Q/2meδτ P1/4m

)m
eδτP2(

eδτ P1/4meδτ Q/2meδτ P1/4m
)m)τ/δτ

• Two separate timescales δτS1 = δτ/m, δτS2 = δτ

• Large and cheap force = P1, Small and expensive force = P2,

• Näıve partitioning: S1 = Sg, S2 = Sf fails as m→ 0

• Can extend this recursively for N timescales

H = T + S1 + . . .+ SN
• Great idea, but dormant for 10 years...
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Multiple Pseudofermions with Mass Preconditioning

• Mass-precondition the fermion determinant (Hasenbusch)

det(M†M) = det(M̂†M̂) det
(
M̂(M†M)−1M̂†

)
with m(M̂) > m(M)

• Tune κ(M̂†M̂) ≈ κ(M̂(M†M)−1M†) ≈
√
κ(M†M) (Hasenbusch-Jansen)

• Why does this work?

– Better sampling of Gaussion integral using multiple

pseudo-fermions

– This reduces fluctuations in the fermion force

– Fermion force F ∝ κν

• Factor 2 improvement through δτ increase

• Use more than one dummy operator

• Gain increases as ml → 0
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Multi-timescale Mass Preconditioning (QCDSF, Urbach et al)

• Tune dummy operators so that most expensive

(preconditioned) force contributes the least

• Use multi-timescale integrator (S1 = Sg, S2 = Ŝ, S3 = Sf)

• Factor 10 improvement at light quark mass
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Domain Decomposition (Lüscher)

• Can rewrite the Dirac operator M =

(
DΩ DδΩ
DδΩ′ DΩ′

)
• DΩ (DΩ′) is Dirac operator on black (white) blocks with

Direchlet boundaries

• DδΩ and DδΩ′ is the Dirac operator connecting these blocks

• Rewrite determinant

detM = det

(
DΩ 0
0 DΩ′

)
det

(
DΩ DδΩ
DδΩ′ DΩ′

)(
D−1

Ω 0

0 D−1
Ω′

)
• Separation into large and cheap, and small but expensive

⇒ multi timescale integrator

• Large speed up over näıve algorithm
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Determinant Preconditioning is Key

• Other methods

– U.V. Filtering (de Forcrand)

– Polynomial filtering (Peardon and Sexton)

– Multistep stochastic correction (see talk by Enno)

• All improvements rely on determinant preconditioning
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Non-local Actions

• Strange quark inclusion requires detM
1
2

• Finite temperature calculations typically use staggered quarks

– Remnant chiral symmetry important here

– Non-local action: detMα, α = 1
2,

1
4

• HMC cannot be applied for these cases

• Inexact algorithms traditionally used

• Is using exact algorithms more expensive?

• Are the improvements in “Local actions” applicable here?
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The R Algorithm (Gottlieb et al)

• Rewrite fermionic determinant:

detMα = exp (α tr lnM) = exp (−Seff)

• Integrate Hamilton’s equations as before

• Use noisy estimator ξ for trace ≡ pseudo-fermion force

• Leading order error term O(δτ)!

• Recover O(δτ2) with Nf dependent ξ updating

– Non-reversible

– Jacobian 6= 1

• Cannot include Metropolis acceptance test

⇒ Algorithm is inexact

• Näıve cost = HMC, but requires extrapolation to zero stepsize

• Stepsize rule of thumb δτ ∼ 2
3ml
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Polynomial Hybrid Monte Carlo (de Forcrand-Takaishi, Frezzotti-Jansen)

• Write in pseudo-fermion notation

detMα =
∫
Dψ̄Dψe−ψ̄M

−αψ

≈
∫
Dψ̄Dψe−ψ̄P (M)ψ,

where P (M) is valid over spectrum

• Pseudo-fermion heatbath easily realised P (M) = p†(M)p(M)

• Use standard MD leapfrog ⇒ exact

• Generally polynomial degree m > Niter CG iterations

• Use low degree polynomial

– Reweight acceptance test or observable

• Use high degree polynomial

– α 6= 1 derivative uses Leibniz rule ⇒ Memory, rounding
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Optimal rational approximations

• Generated using Remez algorithm

• Real non-degenerate roots (poles are always +ve)

• Partial fractions - r(x) =
∑m
k=1

αk
x+βk

• Evaluate using multi-shift solver

• Numerically stable (αk have same sign)
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Rational Hybrid Monte Carlo (Clark-Kennedy)

• Rewrite fermionic determinant

detMα =
∫
Dφ̄Dφe−φ̄M

−αφ

≈
∫
Dφ̄Dφe−φ̄r

2(M)φ,

with r(x) = x−α/2

• Precision is cheap: Conventional Metropolis

• RHMC:

– Hybrid Molecular Dynamics Trajectory

∗ Momentum refreshment heatbath (P (π) ∝ e−π
∗π/2).

∗ Pseudo-fermion heatbath (φ ∝ r(M)−1ξ, where

P (ξ) ∝ e−ξ
∗ξ).

∗ MD trajectory with τ/δτ steps.

– Metropolis Acceptance Test Pacc = min(1, e−δH)
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Rational Hybrid Monte Carlo (Clark-Kennedy)

• MD trajectory

– Double inversion from r2(M)

– Use low degree approx r̄ ≈M−α ≈ r2

– Pseudo-fermion force

S′pf = −
m̄∑
i=1

ᾱiφ
†(M+ β̄i)

−1M′(M+ β̄i)
−1φ.

• CG cost per trajectory ≈ HMC

– One extra inversion required for heatbath
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Exact vs. Inexact (RBC-Bielefeld)

• P4 staggered fermions

• RHMC allows an O(10) increase in stepsize

• Speedup greater as ml → 0
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Exact vs. Inexact (de Forcrand-Philipsen)

(Näıve Staggered Fermions, Nf = 3, V = 834)

• Results:
– Binder cumulant increases
– Stepsize extrapolation is vital for R algorithm
– 25% reduction in critical quark mass at δτR = 1

2ml

– 20% change in renormalised quark mass
• Conclusion: “an exact algorithm is mandatory”
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Multiple Pseudofermions with RHMC (Clark-Kennedy)

• Rewrite determinant

detM = [detM1/n]n

∝
n∏

j=1

dφj dφ
†
j exp

(
−φ†jM

−1/nφj
)
,

• So called nth root trick

• Speedup through δτ increase

• No dummy mass parameters to tune ⇒ easy to increase n

• Single fermion timescale
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Integrator Instability (Clark-Kennedy)

(Staggered fermions, V = 164, β = 5.6, Nf = 2, m = 0.005)

• With n = 1 integrator breaks down as δτ is increased

• Instability “tickled” by low fermion modes ∼ O( 1
ml

) (Joó et al)

• Higher order integrators are more ticklish

• What happens with multiple pseudofermions?
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Integrator Instability (Clark-Kennedy)

(Staggered fermions, V = 164, β = 5.6, Nf = 2, m = 0.005)

• Removes instability in the integrator!

• Why does this work? Lowest modes now O( 1
ml

)1/n

• Force now bulk dominated

• Higher order integrators now beneficial
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Who’s the fastest of them all? (Nf = 2 Wilson)

• Compare multi-timescale mass preconditioning and high order

RHMC

• Use popular testing parameters (V = 243.32, β = 5.6,

Plaquette + Wilson fermions)

• Use measure C = τplaq
int .Nmv.10−4

C
κ RHMC Urbach et al Orth et al
0.15750 9.6 9.0 19.1
0.15800 29.9* 17.4 128
0.15825 52.5* 56.5 -

*Using 4MN5 fourth order integrator (de Forcrand and Takaishi)

• RHMC similar in cost to mass preconditioning

• Look at integrator stability with mass preconditioning

– Gain from higher order integrators also?
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2+1 QCD

• e.g. Domain Wall 2+1 flavour determinant detM†
l Ml

detM†
pvMpv

 detM†
sMs

detM†
pvMpv

1/2

=

detM†
l Ml

detM†
sMs

 detM†
sMs

detM†
pvMpv

3/2

• Mass Precondition using the strange quark

• Use nth root trick for triple strange

• NOT mutually exclusive improvements

• Use multi-timescale integrator (gauge, triple strange, light)

• Light quark mass constitutes around 10% CG cost

• Cost dependence on mass comes mostly from autocorrelation

-29- Yale University



Generating QCD Configurations

Berlin Wall Plot

• Compare the cost of fermion formulations and/or algorithms

– Nf = 2 + 1 DWF RHMC (RBC-UKQCD)

– Nf = 2 Mass preconditioned Wilson (Urbach et al)

– Nf = 2 Mass preconditioned Clover (QCDSF)

– Nf = 2 + 1 Mass preconditioned Clover + RHMC

(Wuppertal-Jülich)

– Nf = 2 Mass preconditioned Twisted Mass (ETM)

– Nf = 2 + 1 AsqTad R (MILC)

– Nf = 2 + 1 AsqTad RHMC (Clark-Kennedy)

• All data scaled to V = 243 × 40, a = 0.08

• Box is too small and too coarse
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Conclusions

• After 20 years HMC is still the best dynamical algorithm

• The last 5 years has seen an explosion in HMC improvement

• Determinant preconditioning is the key behind all improvement

• Non-local actions are no problem

• Pick and mix the most appropriate algorithm
– Multiple time scale mass preconditioning
– Domain decomposition
– nth rootary with RHMC

• HMC cost is now C ∝
(
mπ
mρ

)−2
L5a−6 (Lüscher)

• Physical point no longer a pipedream

• Further improvement must come from autocorrelation?
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