Temporal Preconditioning for Wilson-like Fermions

R. Edwards ${ }^{1}$ B. Joó ${ }^{1}$ M. Peardon ${ }^{2}$

${ }^{1}$ Thomas Jefferson National Accelerator Facility Newport News, VA, USA
${ }^{2}$ School of Mathematics
Trinity College, Dublin, Ireland
QCD and Numerical Analysis, 2007

Preconditioning in Lattice QCD

- In lattice QCD we solve large sparse linear systems involving the fermion matrix M
- During configuration generation we solve

$$
M^{\dagger} M \phi=\chi
$$

- for the pseudofermionic action $\phi^{\dagger}\left(M^{\dagger} M\right)^{-1} \phi$
- for the computation of the Molecular Dynamics (MD) force:

$$
\phi^{\dagger}\left(M^{\dagger} M\right)^{-1}\left[\frac{\partial M^{\dagger}}{\partial U} M+M^{\dagger} \frac{\partial M}{\partial U}\right]\left(M^{\dagger} M\right)^{-1} \phi
$$

- For post analysis (propagators,noisy estimators) we solve:

$$
M \phi=\chi
$$

Preconditioning in Lattice QCD

- Preconditioning is essential to reduce cost of solves AND
- Preconditioning also changes the simulation 'action' AND
- Preconditioning changes the MD fermion forces
- Forces change because the action changes
- Roughly:

$$
F \propto \kappa\left(M^{\dagger} M\right)^{\nu}
$$

- can take larger MD steps avoiding the integrator instabilities
- put fermionic term on a slower timescale
- cf. Mike Clark's talk.

Example: Schur Style Even-Odd Preconditioning

- colour lattice sites as even and odd (red-black)
- Write M as $\left(\begin{array}{ll}M_{e e} & M_{e o} \\ M_{o e} & M_{o o}\end{array}\right)$
- Perform a Schur Decomposition:

where

$$
\tilde{M}=M_{o o}-M_{o e} M_{e e}^{-1} M_{e o}
$$

- Note that: $\operatorname{det} L=\operatorname{det} U=1$
- Inverses of L and U are trivial (flip sign of off diag. piece)
- $M_{e e}^{-1}$ should be straightforward to apply.

Example: Propagators Computations

- Rewrite propagator system

$$
\begin{aligned}
M \phi & =\chi \\
\Rightarrow L\left(\begin{array}{cc}
M_{e e} & 0 \\
0 & \tilde{M}
\end{array}\right) U \phi & =\chi \\
\Rightarrow\left(\begin{array}{cc}
M_{e e} & 0 \\
0 & \tilde{M}
\end{array}\right) \phi^{\prime} & =\chi^{\prime}
\end{aligned}
$$

with $\phi^{\prime}=U_{\phi}$ and $\chi^{\prime}=L^{-1} \chi$.

- The hard work solving $\tilde{M} \phi_{o}^{\prime}=\chi_{o}^{\prime}$ (since M^{-1} is easy)
- At the end $\phi=U^{-1} \phi^{\prime}$

Example: Schur Even-Odd Preconditioning and HMC

- Want to simulate $\operatorname{det}\left(M^{\dagger} M\right)$.
- From the Schur Decomposition:

$$
\operatorname{det}\left(M^{\dagger} M\right)=\operatorname{det}\left(M_{e e}^{\dagger} M_{e e}\right) \operatorname{det}\left(\tilde{M}^{\dagger} \tilde{M}\right)
$$

- Can rewrite our action as:

$$
\exp \left\{-\phi^{\dagger}\left(M^{\dagger} M\right) \phi\right\} \Rightarrow \exp \left\{\log \operatorname{det}\left(M_{e e}^{\dagger} M_{e e}\right)-\phi^{\dagger \dagger}\left(\tilde{M}^{\dagger} \tilde{M}\right)^{-1} \phi^{\prime}\right\}
$$

- Now try to take advantage of knowledge of $M_{e e}$:
- $M_{e e}$ is independent of gauge fields \Rightarrow drop altogether (Wilson Fermions, Domain Wall Fermions)
- Compute log $\operatorname{det}\left(M_{e e}^{\dagger} M_{e e}\right)$ directly (Clover Fermions)
- Key Point: Preconditioning modifies simulation action

Example: Schur Even-Odd Preconditioning and HMC

- Two new force terms in MD
- From exp $\left\{\log \operatorname{det}\left(M_{e e}^{\dagger} M_{e e}\right)\right\}$
- From $\exp \left\{-\phi^{\prime \dagger}\left(\tilde{M}^{\dagger} \tilde{M}\right)^{-1} \phi^{\prime}\right\}$
- New pseudofermionic force involves \tilde{M} rather than M.
- \tilde{M} has better condition than M
- we get smaller forces
- further from integrator step size instabilities
- Can take bigger steps in MD at same overall cost
- Larger step-size integrators become useful
- Fewer inversions for fixed MD trajectory length.
- All the benefits Mike discussed

Previously Successful Preconditionings

- Even Odd (previous example), Lexicographic SSOR
- Domain Decomposition Combined with HMC (Lüscher)
- Hasenbusch Mass Preconditioning (Hasenbusch et. al)
- Simulate

$$
\frac{\operatorname{det}\left(M_{1}^{\dagger} M_{1}\right)}{\operatorname{det}\left(M_{2}^{\dagger} M_{2}\right)} \operatorname{det}\left(M_{2}^{\dagger} M_{2}\right)
$$

- Choose $M_{2}=M_{1}+\delta$
- M_{2} is better conditioned, Ratio is close to $1+O(\delta)$
- Nth-rootery / Multipseudofermions (Clark et. al):

$$
\operatorname{det}\left(M^{\dagger} M\right)=\left[\operatorname{det}\left(M^{\dagger} M\right)^{\frac{1}{N}}\right]^{N} \Rightarrow \prod_{i=1}^{N} e^{\left\{-\phi_{i}^{\dagger}\left(M^{\dagger} M\right)^{-\frac{1}{N}} \phi_{i}\right\}}
$$

- Now have N terms each with condition number $\kappa^{\frac{1}{N}}$.
- Win if $N \kappa^{\frac{1}{N}}<\kappa$

Anisotropic Lattices

- Ideal world
- Want fine lattice spacing (close to continuum)
- Real World:
- Fine lattice too costly, do as coarse as possible
- Compromise: Make just one dimension (time) fine
- 2 lattice spacings: a_{s} (spatial) and a_{t} (temporal)
- Typical choice: $a_{t} \ll a_{s}$
- Important physics applications (eg: spectroscopy)
- Ramifications:
- Lowest modes of fermion matrix result from fine a_{t}
- Largest forces from a_{t}

Ratios of spatial and Temporal forces in Anisotropic RHMC for $\xi \approx 3$

Motivation for Temporal Preconditioning

- Basic Idea
- Write $M=M_{s}+M_{t}=M_{t}\left(M_{t}^{-1} M_{s}+1\right)$
- The preconditioned matrix is $\tilde{M}=1+M_{t}^{-1} M_{s}$
- Deal separately with $\operatorname{det}\left(M_{t}\right)$ in HMC
- Expect
- To still have even-odd preconditioning spatial dimensions
- To gain an improvement in condition number \approx anisotropy
- To gain a reduction in temporal pseudofermion force in HMC

The Wilson Fermion Operator

- Unpreconditioned Wilson Fermion Operator $(r=1)$:

$$
\begin{aligned}
M & =D_{s}+D_{t} \\
D_{s} & =-\sum_{k=1}^{3} P_{-}^{k} U_{k}(x) \delta_{x+\hat{k}, y}+P_{+}^{k} U_{k}^{\dagger}(x-\hat{k}) \delta_{x-\hat{k}, y} \\
D_{t} & =\hat{m}-P_{-} \tilde{U}_{t}(x) \delta_{x+\hat{t}, y}-P_{+} \tilde{U}_{t}^{\dagger}(x-\hat{t}) \delta_{x-\hat{t}, y}
\end{aligned}
$$

with

$$
\begin{aligned}
P_{ \pm}^{k} & =(1 / 2)\left(1 \pm \gamma_{k}\right) \quad k=1,2,3 \\
P_{ \pm} & =(1 / 2)\left(1 \pm \gamma_{4}\right) \\
\tilde{U}(x) & =\frac{\nu}{\xi_{0}} U(x), \quad U \in S U(3) \\
\hat{m} & =1+\left(N_{d}-1\right) \frac{\nu}{\xi_{0}}+M
\end{aligned}
$$

Central Temporal Preconditioning

- Define Matrices:

$$
\begin{aligned}
T(\vec{x})_{t, t^{\prime}} & =\hat{m}-\tilde{U}_{t}(\vec{x}, t) \delta_{t+1, t^{\prime}} \text { with periodic boundaries in time } \\
C_{L}^{-1} & =P_{+}+P_{-} T \\
C_{R}^{-1} & =P_{-}+P_{+} T^{\dagger}
\end{aligned}
$$

- Then we have (playing Projector games): $C_{L}^{-1} C_{R}^{-1}=D_{t}$
- Precondition as:

$$
\tilde{M}=C_{L} M C_{R}=C_{L} D_{s} C_{R}+1
$$

- We retain a kind of γ_{5} hermiticity:

$$
\gamma_{5} C_{L}^{-1} \gamma_{5}=\left(C_{R}^{-1}\right)^{\dagger} \quad \gamma_{5} C_{R}^{-1} \gamma_{5}=\left(C_{L}^{-1}\right)^{\dagger}, \quad \gamma_{5} \tilde{M} \gamma_{5}=\tilde{M}^{\dagger}
$$

Inverting the Preconditioning Matrices

The Sherman Morrison Woodbury Formula

- Consider C_{L} only (C_{R} proceeds similarly)

$$
C_{L}^{-1}=P_{+}+P_{-} T \Rightarrow C_{L}=P_{+}+P_{-} T^{-1}
$$

with

$$
T=\left(\begin{array}{ccccc}
\hat{m} & -U_{t}(\vec{x}, 0) & 0 & \cdots & \\
0 & \hat{m} & -U_{t}(\vec{x}, 1) & 0 & \cdots \\
\vdots & 0 & \ddots & \ddots & \\
0 & \ldots & 0 & \hat{m} & -U_{t}\left(\vec{x}, N_{t}-2\right) \\
-U_{t}\left(\vec{x}, N_{t}-1\right) & 0 & \cdots & 0 & \hat{m}
\end{array}\right)
$$

- Write T as $T=T_{0}+V W^{T}$ with

$$
\begin{gathered}
T_{0}=\left(\begin{array}{ccccc}
\hat{m} & -U_{t}(\vec{x}, 0) & 0 & \ldots & \\
0 & \hat{m} & -U_{t}(\vec{x}, 1) & 0 & \cdots \\
\vdots & 0 & \ddots & \ddots & \\
0 & \ldots & 0 & \hat{m} & -U_{t}\left(\vec{x}, N_{t}-2\right) \\
0 & 0 & \cdots & 0 & \hat{m}
\end{array}\right) \\
V=\left(\begin{array}{c}
0 \\
0 \\
\cdots \\
0 \\
-U_{t}\left(\vec{x}, N_{t}-1\right)
\end{array}\right) \quad W=\left(\begin{array}{c}
1 \\
0 \\
\cdots \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

- Sherman Morrison Woodbury Formula:

$$
T^{-1}=T_{0}^{-1}-P\left(1+W^{\top} P\right)^{-1} W^{\top} T_{0}^{-1} \quad \text { with } P=T_{0}^{-1} V
$$

- T_{0}^{-1} easy to apply with back substitution
- We can compute $P=T_{0}^{-1} V$ by solving $T P=V$

$$
\begin{aligned}
P_{N_{t}-1} & =-\frac{1}{\hat{m}} U_{t}\left(N_{t}-1\right) \\
P_{N_{t}-2} & =-\frac{1}{\hat{m}^{2}} U_{t}\left(N_{t}-2\right) U_{t}\left(N_{t}-1\right) \\
P_{i} & =-\frac{1}{\hat{m}^{N_{t}-i}} \prod_{j=N_{t}-i}^{N_{t}-1} U_{t}(j) \\
P_{0} & =-\frac{1}{\hat{m}^{N_{t}}} \prod_{j=0}^{N_{t}-1} U_{t}(j)
\end{aligned}
$$

- We define

$$
Q=\left(1+W^{T} P\right)^{-1}=\left(1+P_{0}\right)^{-1}
$$

and

$$
T^{-1}=\left(1-P Q W^{T}\right) T_{0}^{-1}
$$

Comments

- Computing P takes $N_{t} S U(3)$ multiplications per spatial coordinate \vec{x} (or $1 \mathrm{SU}(3)$ multiplication per site)
- P_{0} is essentially just the Polyakov Loop
- Computing Q takes $13 x 3$ complex matrix inversion per spatial coordinate. We use LU decomposition.
- Life is made easy if all temporal sites for a spatial coordinate x are kept 'local' to a processor

HMC Considerations

The determinant to simulate

- Determinant of interest is:

$$
\operatorname{det}\left(M^{\dagger} M\right)=\operatorname{det}\left[\left(C_{R}^{-1}\right)^{\dagger} C_{R}^{-1}\right] \times \operatorname{det}\left[\left(C_{L}^{-1}\right)^{\dagger} C_{L}^{-1}\right] \times \operatorname{det}\left[\tilde{M}^{\dagger} \tilde{M}\right]
$$

- Using the γ_{5} hermiticity of C_{L}^{-1} and C_{R}^{-1} :

$$
\begin{aligned}
\operatorname{det}\left(M^{\dagger} M\right) & =\left[\operatorname{det}\left(C_{R}^{-1}\right)\right]^{2} \times\left[\operatorname{det}\left(C_{L}^{-1}\right)\right]^{2} \times \operatorname{det}\left(\tilde{M}^{\dagger} \tilde{M}\right) \\
& =e^{2 \log \operatorname{det}\left(C_{R}^{-1}\right)} e^{2 \log \operatorname{det}\left(C_{L}^{-1}\right)} \int d \phi^{\dagger} d \phi e^{-\phi^{\dagger}\left(\tilde{M}^{\dagger} \tilde{M}\right)^{-1} \phi}
\end{aligned}
$$

HMC Considerations

$\operatorname{det}\left(C_{L}^{-1}\right)$ and $\operatorname{det}\left(C_{R}^{-1}\right)$

- In Dirac Basis:

$$
P_{+}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad P_{-}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and so

$$
\begin{aligned}
\operatorname{det}\left(C_{L}^{-1}\right) & =\operatorname{det}\left(P_{+}+P_{-} T\right)=\operatorname{det}(T)^{2} \\
\operatorname{det}\left(C_{R}^{-1}\right) & =\operatorname{det}\left(P_{-}+P_{-} T^{\dagger}\right)=\operatorname{det}\left(T^{\dagger}\right)^{2}
\end{aligned}
$$

HMC Considerations

- Finally:

$$
\begin{aligned}
T & =T_{0}+V W^{T} \\
& =T_{0}\left(1+T_{0}^{-1} V W^{T}\right) \\
& =T_{0}\left(1+P W^{T}\right)
\end{aligned}
$$

and

$$
1+P W^{T}=\left(\begin{array}{cccc}
1+P_{0} & 0 & \ldots & 0 \\
P_{1} & 1 & 0 & \ldots \\
\vdots & 0 & \ddots & 0 \\
P_{N_{t}-1} & 0 & \ldots & 1
\end{array}\right)
$$

SO

$$
\operatorname{det}(T)=\operatorname{det}\left(T_{0}\right) \operatorname{det}\left(1+P_{0}\right)
$$

- Recall that T_{0} is upper diagonal with

$$
\operatorname{diag}\left(T_{0}\right)=\operatorname{diag}\left(\hat{m} l_{3}, \hat{m} l_{3}, \ldots\right)
$$

so

$$
\operatorname{det}\left(T_{0}\right)=\hat{m}^{3 N_{t}}
$$

- We also have

$$
1+P_{0}=1-\frac{1}{\hat{m}^{N_{t}}} \prod_{j=0}^{N_{t}-1} U_{t}(j)
$$

So

$$
\operatorname{det}(T(\vec{x}))=\hat{m}^{3 N_{t}} \operatorname{det}\left[1-\frac{1}{\hat{m}^{N_{t}}} \prod_{j=0}^{N_{t}-1} U_{t}(\vec{x}, j)\right]
$$

Clover Fermions

- Clover Fermions: Wilson Fermions + and Improvement ("Clover") Term

$$
M=D_{s}+D_{t}+A \text { where } \quad A(x)=-\frac{c_{S W} \sigma_{\mu \nu}}{4} F_{\mu \nu}(x)
$$

- The clover term A is local and Hermitian
- Precondition with same C_{L} and C_{R} as before

$$
\begin{aligned}
M & =C_{L}^{-1} C_{R}^{-1}+D_{s}+A \\
\tilde{M} & =C_{L} M C_{R}=\left[1+C_{L}\left(D_{s}+A\right) C_{R}\right]
\end{aligned}
$$

Even-Odd Preconditioning in Space

Preliminaries

- Want even-odd preconditioning in space together with temporal preconditioning.
- Label sites as even an odd based on spatial coordinate \vec{x} :

$$
-1^{x+y+z}=\left\{\begin{array}{ccc}
+1 & \Rightarrow & \text { even } \\
-1 & \Rightarrow & \text { odd }
\end{array}\right.
$$

- D_{t}, C_{L}, C_{R} and T do not couple neighbours in \vec{x}
- hence they are diagonal in even-odd space
- A is also diagonal in even-odd space
- D_{s} couples nearest neighbours in \vec{x}

The Operator in Even-Odd Space

- We write the clover operator as:

$$
\tilde{M}=1+C_{L}\left(D_{s}+A\right) C_{R}=\left(\begin{array}{cc}
\tilde{M}_{e e} & \tilde{M}_{e o} \\
\tilde{M}_{o e} & \tilde{M}_{o o}
\end{array}\right)=\left(\begin{array}{cc}
1+C_{L}^{e} A^{e e} C^{e e} C_{R}^{e} & C_{L}^{e} D_{s}^{e o} C_{R}^{o} \\
C_{L}^{o} D_{s}^{e o C_{R}^{e}} C_{R}^{\circ} & 1+C_{L}^{C^{\circ} A^{\circ o} C_{R}^{o}}
\end{array}\right)
$$

- Wilson operator simplifies since $A=0$.
- We consider 2 spatial preconditionings
- Schur decomposition based
- Incomplete LU decomposition

Schur Decomposition

- We perform the Schur Decomposition:

$$
\begin{array}{rlr}
\tilde{M} & =L \mathcal{D} U & 1 \\
L & =\left(\begin{array}{cc}
C_{L}^{o} D_{s}^{o e} C_{R}^{e}\left(1+C_{L}^{e} A^{e e} C_{R}^{e}\right)^{-1} & 1
\end{array}\right) \\
U & =\left(\begin{array}{cc}
1 & \left(1+C_{L}^{e} A^{e e} C_{R}^{e}\right)^{-1} C_{L}^{e} D_{s}^{e o} C_{R}^{o} \\
0 & 1
\end{array}\right) \\
\mathcal{D} & =\left(\begin{array}{cc}
1+C_{L}^{e} A^{e e} C_{R}^{e} & \\
0 & 1+C_{L}^{o} A^{\circ o} C_{R}^{o}-C_{L}^{o} D_{s}^{o e} C_{R}^{e}\left(1+C_{L}^{e} A^{e e} C_{R}^{e}\right)^{-1} C_{L}^{e} D_{s}^{e o} C_{R}^{o}
\end{array}\right)
\end{array}
$$

- Note the term:

$$
1+C_{L} A C_{R}=C_{L}\left(D_{t}+A\right) C_{R}
$$

- We rewrite with $C_{L}\left(D_{t}+A\right) C_{R}$

$$
\begin{aligned}
L & =\left(\begin{array}{cc}
1 & 0 \\
C_{L}^{o} D_{s}^{o e}\left(D_{t}+A\right)_{e e}^{-1} C_{L}^{-1} & 1
\end{array}\right) \\
U & =\left(\begin{array}{cc}
1 & \left(C_{R}^{e}\right)^{-1}\left(D_{t}+A\right)_{e e}^{-1} D_{s}^{e o} C_{R}^{o} \\
0 & 1
\end{array}\right) \\
\mathcal{D} & =\left(\begin{array}{cc}
C_{L}^{e}\left(D_{t}+A\right)_{e e} C_{R}^{e} & C_{L}^{o}\left(D_{t}+A\right)_{o o} C_{R}^{o}-C_{L}^{o} D_{s}^{o e}\left(D_{t}+A\right)_{e e}^{-1} D_{s}^{e o} C_{R}^{o}
\end{array}\right)
\end{aligned}
$$

- The matrix $D_{t}+A$ is:

$$
\left(\begin{array}{ccccc}
\hat{m}+A(0) & -U(0) P_{-} & 0 & \cdots & -U^{\dagger}\left(N_{t}-1\right) P_{+} \\
-U^{\dagger}(0) P_{+} & \hat{m}+A(1) & -U(1) P_{-} & 0 & \cdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & & -U^{\dagger}\left(N_{t}-3\right) P_{+} & \hat{m}+A\left(N_{t}-2\right) & -U\left(N_{t}-2\right) P_{-} \\
-U\left(N_{t}-1\right) P_{-} & 0 & \vdots & -U^{\dagger}\left(N_{t}-2\right) P_{+} & \hat{m}+A\left(N_{t}-1\right)
\end{array}\right)
$$

- Now the $P_{ \pm}$enter giving the matrix spin structure
- Dimension is increased by a factor of $N_{s}=4$
- The matrix is Tridiagonal + Corner pieces.
- Can still play the Woodbury Game

- Write

$$
D_{t}+A=T+V W^{T}, \quad V=\left(\begin{array}{c}
-U^{\dagger}\left(N_{t}-1\right) P_{+} \\
0 \\
0 \\
\vdots \\
0 \\
-U\left(N_{t}-1\right) P_{-}
\end{array}\right) \quad W=\left(\begin{array}{c}
P_{-} \\
0 \\
0 \\
\vdots \\
0 \\
P_{+}
\end{array}\right)
$$

and

$$
T=\left(\begin{array}{ccccc}
\hat{m}+A(0) & -U(0) P_{-} & 0 & \cdots & 0 \\
-U^{\dagger}(0) P_{+} & \hat{m}+A(1) & -U(1) P_{-} & 0 & \cdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & & -U^{\dagger}\left(N_{t}-3\right) P_{+} & \hat{m}+A\left(N_{t}-2\right) & -U\left(N_{t}-2\right) P_{-} \\
0 & 0 & \vdots & -U^{\dagger}\left(N_{t}-2\right) P_{+} & \hat{m}+A\left(N_{t}-1\right)
\end{array}\right)
$$

- At this point, things get a little messy for Clover
- Inversion of T doable in principle
- T^{-1} by LDU decomposition builds up continued fractions of $P_{+} A^{-1} P_{-}$.
- A has spin structure - doesn't commute with $P_{ \pm}$.
- Projectors destroy 6×6 block structure of A
- Need minimally inversion of 12×12 matrices.
- Iterative inversion is undesirable (mutliplicative cost?)
- For Wilson Fermions the Schur method is straightforward
- $\left(D_{t}+A\right)^{-1} \Rightarrow D_{t}^{-1}=C_{L} C_{R}$
- We can already compute these easily.

Incomplete LU Decomposition

The other way to do even-odd preconditioning

- Recall our Clover Operator:

$$
M=D_{t}+D_{s}+A=C_{L}^{-1} C_{R}^{-1}+D_{s}+A
$$

- A property of C_{L}^{-1} and C_{R}^{-1} :

$$
C_{L}^{-1}+C_{R}^{-1}=P_{+}+P_{-} T+P_{-}+P_{+} T^{\dagger}=C_{L}^{-1} C_{R}^{-1}+1
$$

so

$$
M=C_{L}^{-1}+C_{R}^{-1}+D_{s}+A-1
$$

- From the previous page

$$
M=C_{L}^{-1}+C_{R}^{-1}+D_{s}+A-1
$$

- Define

$$
\begin{aligned}
\mathcal{L}^{-1} & =\left(\begin{array}{cc}
\left(C_{R}^{e}\right)^{-1} & 0 \\
D_{s}^{o e} & \left(C_{R}^{o}\right)^{-1}
\end{array}\right) \\
\mathcal{U}^{-1} & =\left(\begin{array}{cc}
\left(C_{L}^{e}\right)^{-1} & D_{s}^{e o} \\
0 & \left(C_{L}^{o}\right)^{-1}
\end{array}\right)
\end{aligned}
$$

- We can write an Incomplete LU decomposition of M as:

$$
M=\mathcal{L}^{-1}+\mathcal{U}^{-1}+(A-1)
$$

- Precondition as

$$
\tilde{M}=\mathcal{L} M \mathcal{U}=\mathcal{U}+\mathcal{L}+\mathcal{L}(A-1) \mathcal{U}
$$

- Precondition as

$$
\tilde{M}=\mathcal{L} M \mathcal{U}=\mathcal{U}+\mathcal{L}+\mathcal{L}(A-1) \mathcal{U}
$$

- Can immediately write down \mathcal{L} and \mathcal{U} :

$$
\mathcal{U}=\left(\begin{array}{cc}
C_{L}^{e} & -C_{L}^{e} D_{s}^{e o} C_{L}^{o} \\
0 & C_{L}^{o}
\end{array}\right) \quad \mathcal{L}=\left(\begin{array}{cc}
C_{R}^{e} & 0 \\
-C_{R}^{o} D_{s}^{o e} C_{R}^{e} & C_{R}^{o}
\end{array}\right)
$$

- This preconditioning is very clean.
- Same C_{L} and C_{R} as the spatially unpreconditioned case (just applied to different subsets of sites)
- No spin structure in the T and T^{\dagger}.
- I don't even need to compute A^{-1}.
- 16 Configurations from Anisotropic Clover Tuning Run
- 3 Flavours of Degenerate Clover Quarks (for m_{s} tuning)
- $\beta=5.5, m=-0.077507, c_{S W}^{R}=0.90671, c_{S W}^{T}=0.62002$, $\xi_{0}=2.5369, \nu=0.90671$
- 2 Levels of Stout Smearing in the Linear Operator, $\rho=0.22$. Time dimension not smeared
- Volume $=16^{3} \times 64$, Target Anisotropy: $\xi \approx 3$
- Trajectories 1500-1875 generated by Rational Hybrid Monte Carlo
- 3 Timescales: Fermions, Spatial Gauge, Temporal Gauge
- Integrators: 2nd Order Omelyan, 2nd Order Leapfrod, 2nd Order Leapfrog
- Relative step sizes: $\frac{1}{7}, \frac{1}{3}, \frac{1}{2}$
- Computed Propagators(CGNE), Condition Numbers for various Operators
- Configurations were generated on Cray XT3/4 Facilies at - NCCS, Oak Ridge National Lab
- Pittsburgh Supercomputing Center
- Inversions and condition numbers were computed on the USQCD 6n Intel-Infiniband Cluster at JLab
- The temporal preconditioning algorithms were coded with the Chroma software package

Aniso Clover: cl3_b5p5_x2p5369_um0p077507_n0p9067, CGNE target rel. resid=1.0e-8

Raw Iteration Counts For Unpreconditioned, 4D Schur, Temp. Prec. + 3D ILU, Temp.
Prec. + 3D Schur

Aniso Clover: cl3_b5p5_x2p5369_um0p077507_n0p9067, CGNE target rel. resid=1.0e-8

Iteration Counts Normalized to 4D Schur-Even Odd (the "standard")

Aniso Clover: cl3_b5p5_x2p5369_um0p077507_n0p9067, V=16 ${ }^{3} \times 64$

Condition Number Data

Summary

- We presented the motivation for and details of Temporal Preconditioning
- Compared to the standard 4D Even-Odd Preconditioning
- Gain just under a factor of 2 in CGNE iteration counts
- Temp Prec. Condition Numbers are about 60-73\% lower
- Schur Style 3D Spatial Preconditioning seems slightly better than ILU (but much more complicated)
- Future Work:
- Determine and implement MD Force terms
- Incorporate into current Chroma HMC Structure
- Consider BiCGStabX where (X is 2 , L , etc)
- Optimized Level 3 software... (???)

Acknowledgements

- We gratefully acknowledge support and computer time from the U. S. Department of Energy through the SciDAC (USQCD) and INCITE programmes.
- We also thank the National Science Foundation (NSF) for grants of computer time at Pittsburgh Supercomputing Center and the Teragrid through project TG-MCA07S017

