Temporal Preconditioning for Wilson-like Fermions

R. Edwards¹ B. Joó¹ M. Peardon²

¹Thomas Jefferson National Accelerator Facility Newport News, VA, USA

> ²School of Mathematics Trinity College, Dublin, Ireland

QCD and Numerical Analysis, 2007

ヘロア 人間 アメヨア 人口 ア

ъ

Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

・ロン ・雪 と ・ ヨ と

Preconditioning in Lattice QCD

- In lattice QCD we solve large sparse linear systems involving the fermion matrix *M*
- During configuration generation we solve

 $M^{\dagger}M \phi = \chi$

- for the pseudofermionic action $\phi^{\dagger} (M^{\dagger}M)^{-1} \phi$
- for the computation of the Molecular Dynamics (MD) force:

$$\phi^{\dagger} \left(\boldsymbol{M}^{\dagger} \boldsymbol{M} \right)^{-1} \left[\frac{\partial \boldsymbol{M}^{\dagger}}{\partial \boldsymbol{U}} \boldsymbol{M} + \boldsymbol{M}^{\dagger} \frac{\partial \boldsymbol{M}}{\partial \boldsymbol{U}} \right] \left(\boldsymbol{M}^{\dagger} \boldsymbol{M} \right)^{-1} \phi$$

• For post analysis (propagators, noisy estimators) we solve:

$$\pmb{M} \phi = \chi$$

Motivation

Basic Temporal Preconditioning Even–Odd Preconditioning in Space Numerical Appetizer Summary Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

ヘロア 人間 アメヨア 人口 ア

Preconditioning in Lattice QCD

- Preconditioning is essential to reduce cost of solves AND
- Preconditioning also changes the simulation 'action' AND
- Preconditioning changes the MD fermion forces
 - Forces change because the action changes
 - Roughly:

 $F\propto\kappa\left(M^{\dagger}M
ight)^{
u}$

- can take larger MD steps avoiding the integrator instabilities
- put fermionic term on a slower timescale
- of. Mike Clark's talk.

Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

Example: Schur Style Even-Odd Preconditioning

- colour lattice sites as even and odd (red-black)
- Write *M* as $\begin{pmatrix} M_{ee} & M_{eo} \\ M_{oe} & M_{oo} \end{pmatrix}$
- Perform a Schur Decomposition:

where

$$ilde{M} = M_{oo} - M_{oe} M_{ee}^{-1} M_{eo}$$

- Note that: $\det L = \det U = 1$
- Inverses of *L* and *U* are trivial (flip sign of off diag. piece)
- M_{ee}^{-1} should be straightforward to apply.

Motivation

Basic Temporal Preconditioning Even–Odd Preconditioning in Space Numerical Appetizer Summary Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

イロト イポト イヨト イヨト

Example: Propagators Computations

Rewrite propagator system

$$M \phi = \chi$$

$$\Rightarrow L \begin{pmatrix} M_{ee} & 0 \\ 0 & \tilde{M} \end{pmatrix} U \phi = \chi$$

$$\Rightarrow \begin{pmatrix} M_{ee} & 0 \\ 0 & \tilde{M} \end{pmatrix} \phi' = \chi'$$

with $\phi' = U\phi$ and $\chi' = L^{-1}\chi$.

- The hard work solving $\tilde{M}\phi'_o = \chi'_o$ (since M^{-1} is easy)
- At the end $\phi = U^{-1}\phi'$

Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

Example: Schur Even-Odd Preconditioning and HMC

- Want to simulate det $(M^{\dagger}M)$.
- From the Schur Decomposition:

$$\det\left(\textit{M}^{\dagger}\textit{M}
ight)=\det\left(\textit{M}_{ee}^{\dagger}\textit{M}_{ee}
ight)\det\left(ilde{\textit{M}}^{\dagger} ilde{\textit{M}}
ight)$$

• Can rewrite our action as:

$$\exp\left\{-\phi^{\dagger}\left(\boldsymbol{M}^{\dagger}\boldsymbol{M}\right)\phi\right\} \Rightarrow \exp\left\{\log\det\left(\boldsymbol{M}_{ee}^{\dagger}\boldsymbol{M}_{ee}\right)-\phi^{\prime\dagger}\left(\tilde{\boldsymbol{M}}^{\dagger}\tilde{\boldsymbol{M}}\right)^{-1}\phi^{\prime}\right\}$$

- Now try to take advantage of knowledge of *M_{ee}*:
 - *M_{ee}* is independent of gauge fields ⇒ drop altogether (Wilson Fermions, Domain Wall Fermions)
 - Compute log det $\left(M_{ee}^{\dagger}M_{ee}\right)$ directly (Clover Fermions)
- Key Point: Preconditioning modifies simulation action

Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

・ロト ・回ト ・ヨト ・ヨト

Example: Schur Even-Odd Preconditioning and HMC

- Two new force terms in MD
 - From exp $\left\{ \log \det \left(M_{ee}^{\dagger} M_{ee} \right) \right\}$
 - From exp $\left\{ -\phi^{\prime\dagger} \left(\tilde{M}^{\dagger} \tilde{M} \right)^{-1} \phi^{\prime} \right\}$
- New pseudofermionic force involves \tilde{M} rather than M.
- \tilde{M} has better condition than M
 - we get smaller forces
 - further from integrator step size instabilities
 - Can take bigger steps in MD at same overall cost
 - Larger step-size integrators become useful
 - Fewer inversions for fixed MD trajectory length.
 - All the benefits Mike discussed

Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

< 回 > < 回 > < 回 >

Previously Successful Preconditionings

- Even Odd (previous example), Lexicographic SSOR
- Domain Decomposition Combined with HMC (Lüscher)
- Hasenbusch Mass Preconditioning (Hasenbusch et. al)
 - Simulate

$$\frac{\det\left(M_{1}^{\dagger}M_{1}\right)}{\det\left(M_{2}^{\dagger}M_{2}\right)} \, \det\left(M_{2}^{\dagger}M_{2}\right)$$

• Choose $M_2 = M_1 + \delta$

*M*₂ is better conditioned, Ratio is close to 1 + O(δ)
 Nth-rootery / Multipseudofermions (Clark et. al):

$$\det\left(M^{\dagger}M\right) = \left[\det\left(M^{\dagger}M\right)^{\frac{1}{N}}\right]^{N} \Rightarrow \prod_{i=1}^{N} e^{\left\{-\phi_{i}^{\dagger}\left(M^{\dagger}M\right)^{-\frac{1}{N}}\phi_{i}\right\}}$$

• Now have N terms each with condition number $\kappa^{\frac{1}{N}}$.

• Win if $N \kappa^{\frac{1}{N}} < \kappa$

Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

ヘロト ヘワト ヘビト ヘビト

Anisotropic Lattices

- Ideal world
 - Want fine lattice spacing (close to continuum)

Summarv

- Real World:
 - Fine lattice too costly, do as coarse as possible
- Compromise: Make just one dimension (time) fine
 - 2 lattice spacings: a_s (spatial) and a_t (temporal)
 - Typical choice: $a_t << a_s$
 - Important physics applications (eg: spectroscopy)
- Ramifications:
 - Lowest modes of fermion matrix result from fine at
 - Largest forces from a_t

Motivation

Basic Temporal Preconditioning Even–Odd Preconditioning in Space Numerical Appetizer Summary Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

Ratios of spatial and Temporal forces in Anisotropic RHMC for $\xi \approx 3$

Edwards, Joó, Peardon Temporal Preconditioning

Motivation

Basic Temporal Preconditioning Even–Odd Preconditioning in Space Numerical Appetizer Summary Preconditioning in Lattice QCD Example: Schur Style Even-Odd Preconditioning Previously Successful Preconditionings Anisotropic Lattices

ヘロト ヘワト ヘビト ヘビト

Motivation for Temporal Preconditioning

- Basic Idea
 - Write $M = M_s + M_t = M_t \left(M_t^{-1} M_s + 1 \right)$
 - The preconditioned matrix is $\tilde{M} = 1 + M_t^{-1} M_s$
 - Deal separately with det (*M*_t) in HMC
- Expect
 - To still have even-odd preconditioning spatial dimensions
 - To gain an improvement in condition number \approx anisotropy
 - To gain a reduction in temporal pseudofermion force in HMC

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

The Wilson Fermion Operator

• Unpreconditioned Wilson Fermion Operator (*r* = 1):

$$M = D_s + D_t$$

$$D_s = -\sum_{k=1}^{3} P_-^k U_k(x) \delta_{x+\hat{k},y} + P_+^k U_k^{\dagger}(x-\hat{k}) \delta_{x-\hat{k},y}$$

$$D_t = \hat{m} - P_- \tilde{U}_t(x) \delta_{x+\hat{t},y} - P_+ \tilde{U}_t^{\dagger}(x-\hat{t}) \delta_{x-\hat{t},y}$$

with

$$P_{\pm}^{k} = (1/2)(1 \pm \gamma_{k}) \quad k = 1, 2, 3$$

$$P_{\pm} = (1/2)(1 \pm \gamma_{4})$$

$$\tilde{U}(x) = \frac{\nu}{\xi_{0}}U(x), \quad U \in SU(3)$$

$$\hat{m} = 1 + (N_{d} - 1)\frac{\nu}{\xi_{0}} + M$$

3

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

イロト 不得 とくほ とくほ とう

Central Temporal Preconditioning

• Define Matrices:

 $\begin{array}{rcl} T(\vec{x})_{t,t'} &=& \hat{m} - \tilde{U}_t(\vec{x},t) \delta_{t+1,t'} \text{ with periodic boundaries in time} \\ C_L^{-1} &=& P_+ + P_- T \\ C_R^{-1} &=& P_- + P_+ T^{\dagger} \end{array}$

- Then we have (playing Projector games): $C_L^{-1}C_R^{-1} = D_t$
- Precondition as:

$$\tilde{M} = C_L M C_R = C_L D_s C_R + 1$$

• We retain a kind of γ_5 hermiticity:

$$\gamma_5 C_L^{-1} \gamma_5 = \left(C_R^{-1} \right)^{\dagger} \quad \gamma_5 C_R^{-1} \gamma_5 = \left(C_L^{-1} \right)^{\dagger}, \quad \gamma_5 \tilde{M} \gamma_5 = \tilde{M}^{\dagger}$$

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

くロト (過) (目) (日)

Inverting the Preconditioning Matrices The Sherman Morrison Woodbury Formula

Consider C_L only (C_R proceeds similarly)

$$C_L^{-1} = P_+ + P_- T \Rightarrow C_L = P_+ + P_- T^{-1}$$

with

$$T = \begin{pmatrix} \hat{m} & -U_t(\vec{x},0) & 0 & \dots & \\ 0 & \hat{m} & -U_t(\vec{x},1) & 0 & \dots \\ \vdots & 0 & \ddots & \ddots \\ 0 & \dots & 0 & \hat{m} & -U_t(\vec{x},N_t-2) \\ -U_t(\vec{x},N_t-1) & 0 & \dots & 0 & \hat{m} \end{pmatrix}$$

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

・ロット (雪) (日) (日)

3

• Write T as $T = T_0 + V W^T$ with

$$T_{0} = \begin{pmatrix} \hat{m} & -U_{t}(\vec{x},0) & 0 & \dots \\ 0 & \hat{m} & -U_{t}(\vec{x},1) & 0 & \dots \\ \vdots & 0 & \ddots & \ddots \\ 0 & \dots & 0 & \hat{m} & -U_{t}(\vec{x},N_{t}-2) \\ 0 & 0 & \dots & 0 & \hat{m} \end{pmatrix}$$
$$V = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ -U_{t}(\vec{x},N_{t}-1) \end{pmatrix} \quad W = \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \\ 0 \end{pmatrix}$$

 $T^{-1} = T_0^{-1} - P(1 + W^T P)^{-1} W^T T_0^{-1}$ with $P = T_0^{-1} V$

• T_0^{-1} easy to apply with back substitution

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

• We can compute $P = T_0^{-1} V$ by solving TP = V

$$P_{N_{t}-1} = -\frac{1}{\hat{m}} U_{t}(N_{t}-1)$$

$$P_{N_{t}-2} = -\frac{1}{\hat{m}^{2}} U_{t}(N_{t}-2) U_{t}(N_{t}-1)$$

$$P_{i} = -\frac{1}{\hat{m}^{N_{t}-i}} \prod_{j=N_{t}-i}^{N_{t}-1} U_{t}(j)$$

$$P_{0} = -\frac{1}{\hat{m}^{N_{t}}} \prod_{j=0}^{N_{t}-1} U_{t}(j)$$

We define

$$Q = (1 + W^T P)^{-1} = (1 + P_0)^{-1}$$

and

$$T^{-1} = (1 - PQW^T)T_0^{-1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

イロト イポト イヨト イヨト

- Computing P takes N_t SU(3) multiplications per spatial coordinate x (or 1 SU(3) multiplication per site)
- P₀ is essentially just the Polyakov Loop
- Computing *Q* takes 1 3x3 complex matrix inversion per *spatial coordinate*. We use LU decomposition.
- Life is made easy if all temporal sites for a spatial coordinate *x* are kept 'local' to a processor

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

イロト 不得 とくほ とくほ とう

3

HMC Considerations The determinant to simulate

Determinant of interest is:

$$\det\left(\boldsymbol{M}^{\dagger}\boldsymbol{M}\right) \hspace{2mm} = \hspace{2mm} \det\left[\left(\boldsymbol{C}_{R}^{-1}\right)^{\dagger}\boldsymbol{C}_{R}^{-1}\right]\times\det\left[\left(\boldsymbol{C}_{L}^{-1}\right)^{\dagger}\boldsymbol{C}_{L}^{-1}\right]\times\det\left[\tilde{\boldsymbol{M}}^{\dagger}\tilde{\boldsymbol{M}}\right]$$

• Using the γ_5 hermiticity of C_L^{-1} and C_R^{-1} :

$$\det (M^{\dagger}M) = \left[\det \left(C_{R}^{-1}\right)\right]^{2} \times \left[\det \left(C_{L}^{-1}\right)\right]^{2} \times \det \left(\tilde{M}^{\dagger}\tilde{M}\right)$$
$$= e^{2\log \det \left(C_{R}^{-1}\right)}e^{2\log \det \left(C_{L}^{-1}\right)}\int d\phi^{\dagger}d\phi \ e^{-\phi^{\dagger}\left(\tilde{M}^{\dagger}\tilde{M}\right)^{-1}\phi}$$

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

イロト 不得 とくほと くほとう

∃ 9900

HMC Considerations det (C_L^{-1}) and det (C_R^{-1})

In Dirac Basis:

and so

$$det \left(C_{L}^{-1} \right) = det \left(P_{+} + P_{-}T \right) = det \left(T \right)^{2}$$
$$det \left(C_{R}^{-1} \right) = det \left(P_{-} + P_{-}T^{\dagger} \right) = det \left(T^{\dagger} \right)^{2}$$

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

HMC Considerations $\det(T)$

Finally:

$$T = T_0 + VW^T$$

= $T_0 \left(1 + T_0^{-1} VW^T \right)$
= $T_0 \left(1 + PW^T \right)$

and

$$1 + PW^{T} = \begin{pmatrix} 1 + P_{0} & 0 & \dots & 0 \\ P_{1} & 1 & 0 & \dots \\ \vdots & 0 & \ddots & 0 \\ P_{N_{t}-1} & 0 & \dots & 1 \end{pmatrix}$$

so

 $\det(T) = \det(T_0)\det(1+P_0)$

▶ < Ξ >

ъ

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

イロト 不得 とくほ とくほとう

3

• Recall that T₀ is upper diagonal with

diag (T_0) = diag $(\hat{m}I_3, \hat{m}I_3, \ldots)$

SO

$$\det(T_0) = \hat{m}^{3N_t}$$

We also have

$$1 + P_0 = 1 - \frac{1}{\hat{m}^{N_t}} \prod_{j=0}^{N_t-1} U_t(j)$$

So

$$\det\left(\mathcal{T}\left(\vec{x}\right)\right) = \hat{m}^{3N_{t}}\det\left[1 - \frac{1}{\hat{m}^{N_{t}}}\prod_{j=0}^{N_{t}-1}U_{t}(\vec{x},j)\right]$$

Wilson Fermions Central Temporal Preconditioning HMC Considerations Clover Fermions

ヘロト ヘ戸ト ヘヨト ヘヨト

Clover Fermions Improved Wilson Fermions

> Clover Fermions: Wilson Fermions + and Improvement ("Clover") Term

$$M = D_s + D_t + A$$
 where $A(x) = -\frac{c_{SW}\sigma_{\mu\nu}}{4}F_{\mu\nu}(x)$

- The clover term A is local and Hermitian
- Precondition with same C_L and C_R as before

$$M = C_{L}^{-1}C_{R}^{-1} + D_{s} + A$$

$$\tilde{M} = C_{L}MC_{R} = [1 + C_{L}(D_{s} + A)C_{R}]$$

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

ヘロト ヘワト ヘビト ヘビト

Even–Odd Preconditioning in Space Preliminaries

- Want even-odd preconditioning in space together with temporal preconditioning.
- Label sites as even an odd based on *spatial* coordinate \vec{x} :

$$-1^{x+y+z} = \begin{cases} +1 \Rightarrow \text{ even} \\ -1 \Rightarrow \text{ odd} \end{cases}$$

- *D_t*, *C_L*, *C_R* and *T* do not couple neighbours in *x* hence they are *diagonal* in even-odd space
- A is also diagonal in even-odd space
- D_s couples nearest neighbours in \vec{x}

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

< 🗇 🕨

The Operator in Even–Odd Space

• We write the clover operator as:

$$\tilde{M} = 1 + C_L(D_s + A)C_R = \begin{pmatrix} \tilde{M}_{ee} & \tilde{M}_{eo} \\ \tilde{M}_{oe} & \tilde{M}_{oo} \end{pmatrix} = \begin{pmatrix} 1 + C_L^e A^{ee} C_R^e & C_L^e D_s^{eo} C_R^o \\ C_L^o D_s^{oe} C_R^e & 1 + C_L^o A^{oo} C_R^o \end{pmatrix}$$

- Wilson operator simplifies since A = 0.
- We consider 2 spatial preconditionings
 - Schur decomposition based
 - Incomplete LU decomposition

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

イロン 不同 とくほ とくほ とう

ъ

Schur Decomposition

• We perform the Schur Decomposition:

$$\begin{split} \tilde{M} &= L \mathcal{D} U \\ L &= \begin{pmatrix} 1 & 0 \\ C_L^o D_s^{oe} C_R^e (1 + C_L^e A^{ee} C_R^e)^{-1} & 1 \end{pmatrix} \\ U &= \begin{pmatrix} 1 & (1 + C_L^e A^{ee} C_R^e)^{-1} C_L^e D_s^{ee} C_R^o \\ 0 & 1 \end{pmatrix} \\ \mathcal{D} &= \begin{pmatrix} 1 + C_L^e A^{ee} C_R^e & 0 \\ 0 & 1 + C_L^o A^{oe} C_R^o - C_L^o D_s^{oe} C_R^e (1 + C_L^e A^{ee} C_R^e)^{-1} C_L^e D_s^{ee} C_R^e \end{pmatrix} \end{split}$$

• Note the term:

$$1 + C_L A C_R = C_L (D_t + A) C_R$$

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

ヘロト 人間 とくほとくほとう

• We rewrite with $C_L(D_t + A)C_R$

$$\begin{split} L &= \left(\begin{array}{cc} 1 & 0 \\ C_L^o D_s^{oe} (D_t + A)_{ee}^{-1} C_L^{-1} & 1 \end{array} \right) \\ U &= \left(\begin{array}{cc} 1 & (C_R^e)^{-1} (D_t + A)_{ee}^{-1} D_s^{eo} C_R^o \\ 0 & 1 \end{array} \right) \\ \mathcal{D} &= \left(\begin{array}{cc} C_L^o (D_t + A)_{ee} C_R^e & 0 \\ 0 & C_L^o (D_t + A)_{oo} C_R^o - C_L^o D_s^{oe} (D_t + A)_{ee}^{-1} D_s^{eo} C_R^o \end{array} \right) \end{split}$$

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

• The matrix $D_t + A$ is:

 $\begin{pmatrix} \hat{m} + A(0) & -U(0)P_{-} & 0 & \dots & -U^{\dagger}(N_{t} - 1)P_{+} \\ -U^{\dagger}(0)P_{+} & \hat{m} + A(1) & -U(1)P_{-} & 0 & \dots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & -U^{\dagger}(N_{t} - 3)P_{+} & \hat{m} + A(N_{t} - 2) & -U(N_{t} - 2)P_{-} \\ -U(N_{t} - 1)P_{-} & 0 & \vdots & -U^{\dagger}(N_{t} - 2)P_{+} & \hat{m} + A(N_{t} - 1) \end{pmatrix}$

- Now the P_{\pm} enter giving the matrix spin structure
- Dimension is increased by a factor of $N_s = 4$
- The matrix is Tridiagonal + Corner pieces.
 - Can still play the Woodbury Game

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

ヘロト 人間 とくほとくほとう

Write

$$D_{t} + A = T + VW^{T}, \qquad V = \begin{pmatrix} -U^{\dagger}(N_{t} - 1)P_{+} \\ 0 \\ 0 \\ \vdots \\ 0 \\ -U(N_{t} - 1)P_{-} \end{pmatrix} \qquad W = \begin{pmatrix} P_{-} \\ 0 \\ 0 \\ \vdots \\ 0 \\ P_{+} \end{pmatrix}$$

and

Edwards, Joó, Peardon Temporal Preconditioning

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

イロン イロン イヨン イヨン

- At this point, things get a little messy for Clover
 - Inversion of *T* doable in principle
 - T^{-1} by LDU decomposition builds up continued fractions of $P_+A^{-1}P_-$.
 - A has spin structure doesn't commute with P_{\pm} .
 - Projectors destroy 6 × 6 block structure of A
 - Need minimally inversion of 12×12 matrices.
 - Iterative inversion is undesirable (mutliplicative cost?)
- For Wilson Fermions the Schur method is straightforward

•
$$(D_t + A)^{-1} \Rightarrow D_t^{-1} = C_L C_R$$

• We can already compute these easily.

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

ヘロア 人間 アメヨア 人口 ア

ъ

Incomplete LU Decomposition The other way to do even-odd preconditioning

Recall our Clover Operator:

$$M = D_t + D_s + A = C_L^{-1}C_R^{-1} + D_s + A$$

• A property of
$$C_L^{-1}$$
 and C_R^{-1} :

$$C_L^{-1} + C_R^{-1} = P_+ + P_- T + P_- + P_+ T^{\dagger} = C_L^{-1} C_R^{-1} + 1$$

SO

$$M = C_L^{-1} + C_R^{-1} + D_s + A - 1$$

1

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

From the previous page

$$M = C_L^{-1} + C_R^{-1} + D_s + A - 1$$

Define

$$\mathcal{L}^{-1} = \begin{pmatrix} (C_R^e)^{-1} & 0 \\ D_s^{oe} & (C_R^o)^{-1} \end{pmatrix}$$

$$\mathcal{U}^{-1} = \begin{pmatrix} (C_L^e)^{-1} & D_s^{eo} \\ 0 & (C_L^o)^{-1} \end{pmatrix}$$

• We can write an Incomplete LU decomposition of M as:

$$M = \mathcal{L}^{-1} + \mathcal{U}^{-1} + (A - 1)$$

Precondition as

$$\tilde{M} = \mathcal{L}M\mathcal{U} = \mathcal{U} + \mathcal{L} + \mathcal{L}(A - 1)\mathcal{U}$$

イロト 不得 とくほ とくほとう

ъ

Preliminaries The Operator in Even–Odd Space Schur Decomposition Incomplete LU Decomposition

イロト イポト イヨト イヨト

Precondition as

$$ilde{M} = \mathcal{L}M\mathcal{U} = \mathcal{U} + \mathcal{L} + \mathcal{L}(A-1)\mathcal{U}$$

• Can immediately write down \mathcal{L} and \mathcal{U} :

$$\mathcal{U}=\left(egin{array}{cc} C_L^e & -C_L^e D_s^{eo} C_L^o \ 0 & C_L^o \end{array}
ight) \qquad \mathcal{L}=\left(egin{array}{cc} C_R^e & 0 \ -C_R^o D_s^{oe} C_R^e & C_R^o \end{array}
ight)$$

This preconditioning is very clean.

- Same *C_L* and *C_R* as the spatially unpreconditioned case (just applied to different subsets of sites)
- No spin structure in the T and T^{\dagger} .
- I don't even need to compute A^{-1} .

Set Up CG Iteration Counts Condition Numbers

- 16 Configurations from Anisotropic Clover Tuning Run
 - 3 Flavours of Degenerate Clover Quarks (for *m_s* tuning)
 - $\beta = 5.5, m = -0.077507, c_{SW}^R = 0.90671, c_{SW}^T = 0.62002, \xi_0 = 2.5369, \nu = 0.90671$
 - 2 Levels of Stout Smearing in the Linear Operator, $\rho = 0.22$. Time dimension not smeared
 - Volume=16³ × 64, Target Anisotropy: $\xi \approx 3$
 - Trajectories 1500-1875 generated by Rational Hybrid Monte Carlo
 - 3 Timescales: Fermions, Spatial Gauge, Temporal Gauge
 - Integrators: 2nd Order Omelyan, 2nd Order Leapfrod, 2nd Order Leapfrog

ヘロン ヘアン ヘビン ヘビン

- Relative step sizes: $\frac{1}{7}$, $\frac{1}{3}$, $\frac{1}{2}$
- Computed Propagators(CGNE), Condition Numbers for various Operators

Set Up CG Iteration Counts Condition Numbers

- Configurations were generated on Cray XT3/4 Facilies at
 - NCCS, Oak Ridge National Lab
 - Pittsburgh Supercomputing Center
- Inversions and condition numbers were computed on the USQCD 6n Intel-Infiniband Cluster at JLab
- The temporal preconditioning algorithms were coded with the Chroma software package

ヘロト 人間 ト ヘヨト ヘヨト

Set Up CG Iteration Counts Condition Numbers

Raw Iteration Counts For Unpreconditioned, 4D Schur, Temp. Prec. + 3D ILU, Temp. Prec. + 3D Schur

Edwards, Joó, Peardon Temporal Preconditioning

Set Up CG Iteration Counts Condition Numbers

Aniso Clover: cl3_b5p5_x2p5369_um0p077507_n0p9067, CGNE target rel. resid=1.0e-8 3 # CGNE Iterations /4D Schur-Even Odd ● ● Unprec.Time + Unprec. Space 4D Schur Even-Odd Temporal Prec + 3D ILU Even Odd Space Temporal Prec + 3D Schur Even-Odd Space 0.5 0 1700 1800 1900 1600 # Config

Iteration Counts Normalized to 4D Schur-Even Odd (the "standard")

Edwards, Joó, Peardon Temporal Preconditioning

★ E > ★ E >

ъ

< 🗇 ▶

Set Up CG Iteration Counts Condition Numbers

Condition Number Data

Edwards, Joó, Peardon

Temporal Preconditioning

(A) (E) (A) (E)

ъ

Acknowledgements

Summary

- We presented the motivation for and details of Temporal Preconditioning
- Compared to the standard 4D Even-Odd Preconditioning
 - Gain just under a factor of 2 in CGNE iteration counts
 - Temp Prec. Condition Numbers are about 60-73% lower
 - Schur Style 3D Spatial Preconditioning seems slightly better than ILU (but much more complicated)
- Future Work:
 - Determine and implement MD Force terms
 - Incorporate into current Chroma HMC Structure
 - Consider BiCGStabX where (X is 2, L, etc)
 - Optimized Level 3 software... (???)

・ 同 ト ・ ヨ ト ・ ヨ ト

Acknowledgements

Acknowledgements

- We gratefully acknowledge support and computer time from the U. S. Department of Energy through the SciDAC (USQCD) and INCITE programmes.
- We also thank the National Science Foundation (NSF) for grants of computer time at Pittsburgh Supercomputing Center and the Teragrid through project TG-MCA07S017

・ 同 ト ・ ヨ ト ・ ヨ ト