
David E. Keyes
Department of Applied Physics & Applied Mathematics

Columbia University

Scaling of Domain Decomposition and
Multigrid Methods

Fourth International Workshop on
Numerical Analysis and Lattice QCD

Yale University and NSF

3 May 2007

Yale QCD Workshop, 3 May 2007

Happy Birthday, Vito
Born 3 May 1860 (Ancona)
PhD Physics, 1882 (Pisa)
Invented the idea of a
“functional” in 1883
Wrote on “Volterra” integral
equations, 1884-1892
Worked on population biology,
predator-prey systems, cf.
1918
Abandoned Italy under
fascism for Paris in 1931
Died 11 Oct 1940 (Rome)

Vito Volterra

Yale QCD Workshop, 3 May 2007

Definition and motivation

Domain decomposition (DD) is a “divide and
conquer” technique for arriving at the solution of
problem defined over a domain from the solution of
related problems posed on subdomains
Motivating assumption #1: the solution of the
subproblems is qualitatively or quantitatively
“easier” than the original
Motivating assumption #2: the original problem does
not fit into the available memory space
Motivating assumption #3 (parallel context): the
subproblems can be solved with some concurrency

Yale QCD Workshop, 3 May 2007

Remarks on definition

“Divide and conquer” is not a fully satisfactory
description

“divide, conquer, and combine” is better
combination is often through iterative means

True “divide-and-conquer” (only) algorithms are
rare in computing (unfortunately)
It might be preferable to focus on “subdomain
composition” rather than “domain decomposition”

We often think we know all about “two” because two is “one and
one”. We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)

Yale QCD Workshop, 3 May 2007

Remarks on definition

Domain decomposition has generic and specific
senses within the universe of parallel algorithms

generic sense: any data decomposition (considered in
contrast to task decomposition)
specific sense: the domain is the domain of definition of an
operator equation (differential, integral, algebraic)

In a generic sense the process of constructing a
parallel program consists of

Decomposition into tasks
Assignment of tasks to processes
Orchestration of processes

Communication and synchronization

Mapping of processes to processors

Yale QCD Workshop, 3 May 2007

Subproblem structure

The subdomains may be of the same or
different dimensionality as the original

2D
2D

2D

1D
0D

Yale QCD Workshop, 3 May 2007

Plan of presentation
Imperative of domain decomposition (DD) for
terascale computing
Basic DD algorithmic concepts

Schwarz
Schur
Schwarz-Schur combinations

Basic DD convergence and scaling properties
Comparison of DD and multilevel
preconditioners in parallel (c/o P. Fischer)

Yale QCD Workshop, 3 May 2007

Prime sources for domain decomposition
1996 1997 2001 2004

Yale QCD Workshop, 3 May 2007

Other sources for domain decomposition

+ DDM.ORG and other proceedings volumes, 1988-2006

1992
1994 1995 2001

XVI

Olof Widlund & David Keyes

55

Yale QCD Workshop, 3 May 2007

Algorithmic requirements from architecture

Must run on physically distributed memory units
connected by message-passing network, each serving
one or more processors with multiple levels of cache

T3E

“horizontal” aspects “vertical” aspects

Yale QCD Workshop, 3 May 2007

Platforms capable of
peak petaflop/s by 2009

< $100M BG

Including 288TB

~2.3MW P.01-.03131,072 cpus
2.2x to PF

294,912 cpus

Blue Gene L/P

> $150M x86

+memory

~6MW x86QC2.6-8.08000 cpus
12x to PF

~100,000 cpus

Clusters
x86-64/AMD64

>$170M P6

+memory

~9.4MW P61.310240 cpus
7x to PF

~72,000 cpus

IBM Power5/6

>$150M XT4

+memory

~8MW XT4~.1 - ~110880 cpus
10x to PF

~100,000 cpus

Cray XT3/XT4

Estimated
System

Cost

Power
Consumption

@ 1 PF/s

Failures per
Month

Per TF/s

Scale
Demonstrated
Factor to PF/s

c/o Rick Stevens, ANL

Yale QCD Workshop, 3 May 2007

Overview of laboratory plans

Cray XT
Lawrence Berkeley
Oak Ridge
Sandia

IBM BlueGene
Argonne
Lawrence Livermore

IBM Cell
Los Alamos

Caveat: not all of the plans are approved for funding

Yale QCD Workshop, 3 May 2007

Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these

Domain decomposition also “natural”
for software engineering

Fortunate that its theory was built
in advance of requirements!

Yale QCD Workshop, 3 May 2007

Contemporary interest

Goal is algorithmic scalability:
fill up memory of arbitrarily large machines to
increase resolution, while preserving nearly constant*
running times with respect to proportionally smaller
problem on one processor

*at worst logarithmically growing

Yale QCD Workshop, 3 May 2007

Two definitions of scalability

“Strong scaling”
execution time decreases in
inverse proportion to the
number of processors
fixed size problem overall

“Weak scaling”
execution time remains constant,
as problem size and processor
number are increased in
proportion
fixed size problem per processor
also known as “Gustafson
scaling”

T

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0

Yale QCD Workshop, 3 May 2007

Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and
incompressible Euler and Navier-Stokes flows
Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes
43min

3072 nodes
2.5min,
226Gf/s

15µs/unknown
70% efficient

Yale QCD Workshop, 3 May 2007

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e
(s

ec
on

ds
)

Total Salinas FETI-DP

Weak scaling illus. (2002 Bell Prize)

1mdof

4mdof

9mdof

18mdof

30mdof

60mdof

c/o C. Farhat, Stanford

Finite Element Tearing and Interconnection (FETI) algorithm for
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante

Yale QCD Workshop, 3 May 2007

Decomposition strategies for Lu=f in Ω

Operator decomposition

Function space decomposition

Domain decomposition

∑=
k

kLL

∑∑ Φ=Φ=
k

kk
k

kk uuff ,

kk Ω=Ω U

Yale QCD Workshop, 3 May 2007

Parabolic PDE example
Continuous

Semi-discrete in time

Spatial discretization

fu
t

=∇−
∂
∂)(2

fuuyxh
kk II +=++ +)()1()](2

1[ττ LL

fkuku
II +∇− =+)()1()(2

ττ

IL
IL

⊗

⊗

=

=

{-1,2,-1}
{-1,2,-1}

tridiag
tridiag

y

x

Yale QCD Workshop, 3 May 2007

Operator decomposition

Consider ADI
fuyux

kk II +−=+ +)()2/1(][][2/2/ LL ττ

fuxuy
kk II +−=+ ++)2/1()1(][][2/2/ LL ττ

Iteration matrix consists of four multiplicative
substeps per timestep

two sparse matrix-vector multiplies
two sets of unidirectional bandsolves

Parallelism within each substep
But global data exchanges between bandsolve substeps

Yale QCD Workshop, 3 May 2007

Function space decomposition

Consider a spectral Galerkin method
),()(),,(

1
yxtatyxu j

N

j
j Φ= ∑

=

Nifuu iiidt
d ,...,1),,(),(),(=Φ+Φ=Φ L

Nifa ijjijdt
da

jij
j ,...,1),,(),(),(=Φ+ΦΦ∑=ΦΦ∑ L

fMKaMdt
da 11 −− +=

Method-of-lines system of ODEs
Perhaps are diagonal
matrices
Parallelism across spectral index
But global data exchanges to transform back to
physical variables at each step

)],[()],,[(ijij KM ΦΦ≡ΦΦ≡ L

Yale QCD Workshop, 3 May 2007

SPMD parallelism w/domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

Yale QCD Workshop, 3 May 2007

DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

Yale QCD Workshop, 3 May 2007

Digression for notation’s sake
We need a convenient notation for
mapping vectors (representing
discrete samples of a continuous
field) from full domain to subdomain
and back

1
3

1

6

5

4

3

2

1

1 00
00

01
00

00
01

u
x
x

x
x
x
x
x
x

uR ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0

0

00
00
00
10
00
01

3

1

3

1
11

x

x

x
x

uR T

x1
x2

x3

x4

x5

x6

u1

⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

01
00

00
01

1R
Let Ri be a Boolean operator
that extracts the elements of
the ith subdomain from the
global vector

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00
00
00
10
00
01

1
TR

Then Ri
T maps the elements

of the ith subdomain back
into the global vector,
padding with zeros

Yale QCD Workshop, 3 May 2007

Schwarz domain decomposition method

Consider restriction and extension
operators for subdomains, ,
and for possible coarse grid,
Replace discretized with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=

Yale QCD Workshop, 3 May 2007

Krylov bases for sparse systems

E.g., conjugate gradients (CG) for symmetric, positive definite
systems, and generalized minimal residual (GMRES) for
nonsymmetry or indefiniteness
Krylov iteration is an algebraic projection method for converting
a high-dimensional linear system into a lower-dimensional linear
system

AVWH T≡
=

=

bAx =
=

bWg T=

=

Vyx = =
gHy =

Yale QCD Workshop, 3 May 2007

Remember this formula of Schwarz …

i
T
ii

T
ii RARRRB 11)(−− ∑=

For a “good” approximation, B-1, to A-1:

Yale QCD Workshop, 3 May 2007

Now, let’s compare!

Operator decomposition (ADI)
natural row-based assignment requires global all-to-
all, bulk data exchanges in each step (for transpose)

Function space decomposition (Fourier)
Natural mode-based assignment requires global all-to-
all, bulk data exchanges in each step (for transform)

Domain decomposition (Schwarz)
Natural domain-based assignment requires local
surface data exchanges, global reductions, and
optional small global problem

(Of course, domain decomposition can be interpreted
as a special operator or function space decomposition)

Yale QCD Workshop, 3 May 2007

Schwarz subspace decomposition

Yale QCD Workshop, 3 May 2007

Schwarz subspace decomposition

Yale QCD Workshop, 3 May 2007

Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, communication, synchronization
Mapping processes to processors

c/o D. E. Culler, Berkeley

Yale QCD Workshop, 3 May 2007

Krylov-Schwarz parallelization summary
Decomposition into concurrent tasks

by domain

Assignment of tasks to processes
typically one subdomain per process

Orchestration of communication between processes
to perform sparse matvec – near neighbor communication
to perform subdomain solve – nothing
to build Krylov basis – global inner products
to construct best fit solution – global sparse solve (redundantly)

Mapping of processes to processors
typically one process per processor

Yale QCD Workshop, 3 May 2007

Krylov-Schwarz kernel in parallel

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

What happens if, for instance, in this
(schematicized) iteration, arithmetic
speed is doubled, scalar all-gather is
quartered, and local scatter is cut by
one-third? Each phase is
considered separately. Answer is to
the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M

Yale QCD Workshop, 3 May 2007

Krylov-Schwarz compelling in serial, too
As successive workingsets “drop” into a level of memory,
capacity (and with effort conflict) misses disappear, leaving
only compulsory misses, reducing demand on main memory
bandwidth
Cache size is not easily manipulated, but domain size is

Traffic decreases as
cache gets bigger or
subdomains get smaller

Yale QCD Workshop, 3 May 2007

Estimating scalability of stencil computations
Given complexity estimates of the leading terms of:

the concurrent computation (per iteration phase)
the concurrent communication
the synchronization frequency

And a bulk synchronous model of the architecture including:
internode communication (network topology and protocol reflecting horizontal
memory structure)
on-node computation (effective performance parameters including vertical
memory structure)

One can estimate optimal concurrency and optimal execution
time

on per-iteration basis, or overall (by taking into account any granularity-
dependent convergence rate)
simply differentiate time estimate in terms of (N,P) with respect to P, equate to

zero and solve for P in terms of N

Yale QCD Workshop, 3 May 2007

Estimating 3D stencil costs (per iteration)

grid points in each
direction n, total work
N=O(n3)
processors in each
direction p, total procs
P=O(p3)
memory per node
requirements O(N/P)

concurrent execution time per
iteration A n3/p3

grid points on side of each
processor subdomain n/p
Concurrent neighbor commun.
time per iteration B n2/p2

cost of global reductions in each
iteration C log p or C p(1/d)

C includes synchronization
frequency

same dimensionless units for
measuring A, B, C

e.g., cost of scalar floating point
multiply-add

Yale QCD Workshop, 3 May 2007

3D stencil computation illustration
Rich local network, tree-based global reductions

total wall-clock time per iteration

for optimal p, , or

or (with),

without “speeddown,” p can grow with n
in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂
∂

p
T

,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B

2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθ

0→C
B

n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛=

3
1

3

Yale QCD Workshop, 3 May 2007

3D stencil computation illustration
Rich local network, tree-based global reductions

optimal running time

where

limit of infinite neighbor bandwidth, zero neighbor latency ()

(This analysis is on a per iteration basis; complete analysis
multiplies this cost by an iteration count estimate that generally
depends on n and p.)

(),log))(,(23 nCBAnpnT opt ρ
ρρ

++=

[] [] ⎟
⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθρ
C
A

0→B

⎥⎦
⎤

⎢⎣
⎡ ++= .log

3
1log))(,(const

C
AnCnpnT opt

Yale QCD Workshop, 3 May 2007

Scalability results for DD stencil computations

With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:

optimal number of processors scales linearly with
problem size

With 3D torus-based global reductions and
scalable nearest neighbor hardware:

optimal number of processors scales as three-fourths
power of problem size (almost “scalable”)

With common network bus (heavy
contention):

optimal number of processors scales as one-fourth
power of problem size (not “scalable”)

Yale QCD Workshop, 3 May 2007

Resource scaling for PDEs
For 3D problems, work is proportional to four-thirds power
of memory, because

for equilibrium problems, work scales with problem size times
number of iteration steps -- proportional to resolution in single
spatial dimension
for evolutionary problems, work scales with problems size times
number of time steps -- CFL arguments place latter on order of
spatial resolution, as well

Proportionality constant can be adjusted over a very wide
range by both discretization (high-order implies more work
per point and per memory transfer) and by algorithmic
tuning
Machines designed for PDEs can be “memory-thin”
If frequent time frames are to be captured, other resources -
- disk capacity and I/O rates -- must both scale linearly with
work, more stringently than for memory.

Yale QCD Workshop, 3 May 2007

Factoring convergence rate into estimates

In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov-Schwarz iterative methods typically converge in a
number of iterations that scales as the square-root of the
condition number of the Schwarz-preconditioned system

Yale QCD Workshop, 3 May 2007

Where do these results come from?
Point Jacobi result is well known (see any book on the
numerical analysis of elliptic problems)
Subdomain Jacobi result has interesting history

Was derived independently from functional analysis, linear algebra, and
graph theory

Schwarz theory is neatly and abstractly summarized in Section
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli &
Widlund (2004)

condition number, κ ≤ ω [1+ρ(ε)] C0
2

C0
2 is a splitting constant for the subspaces of the decomposition

ρ(ε) is a measure of the orthogonality of the subspaces
ω is a measure of the approximation properties of the subspace solvers
(can be unity for exact subdomain solves)
These properties are estimated for different subspaces, different
operators, and different subspace solvers and the “crank” is turned

Yale QCD Workshop, 3 May 2007

Comments on the Schwarz results
Original basic Schwarz estimates were for:

self-adjoint elliptic operators
positive definite operators
exact subdomain solves,
two-way overlapping with
generous overlap, δ=O(H) (original 2-level result was O(1+H/δ))

Subsequently extended to (within limits):
nonself-adjointness (e.g, convection)
indefiniteness (e.g., wave Helmholtz)
inexact subdomain solves
one-way overlap communication (“restricted additive Schwarz”)
small overlap

T
ii RR ,

1−
iA

Yale QCD Workshop, 3 May 2007

Comments on the Schwarz results, cont.

Theory still requires “sufficiently fine” coarse mesh
However, coarse space need not be nested in the fine space or in the
decomposition into subdomains

Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

Wave Helmholtz (e.g., acoustics) is delicate at high
frequency:

standard Schwarz Dirichlet boundary conditions can lead to
undamped resonances within subdomains,
remedy involves Robin-type transmission boundary conditions
on subdomain boundaries,

0=Γu

0)/(=∂∂+ Γnuu α

— Yogi Berra

Yale QCD Workshop, 3 May 2007

1 proc

Illustration of 1-level vs. 2-level tradeoff

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver.
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Temperature iso-lines
on slice plane, velocity
iso-surfaces and
streamlines in 3D

N.45

N.24

N0

2 – Level DD
Exact Coarse
Solve

2 – Level DD
Approx. Coarse
Solve

1 – Level
DD3D Results

512 procs

Total Unknowns

A
vg

. I
te

ra
tio

ns
 p

er
 N

ew
to

n
St

ep

Thermal Convection
Problem (Ra = 1000)

c/o J. Shadid and R. Tuminaro

Yale QCD Workshop, 3 May 2007

“Unreasonable effectiveness” of Schwarz
When does the sum of partial inverses equal the
inverse of the sums? When the decomposition is right!

Good decompositions are a compromise between
conditioning and parallel complexity, in practice

{ }ir
iii raAr = T

iii Arra =
Let be a complete set of orthonormal row
eigenvectors for A : or

ii
T

ii rarA Σ=
Then

i
T

ii
T

iiii
T

ii rArrrrarA 111)(−−− Σ=Σ=
and

— the Schwarz formula!

Yale QCD Workshop, 3 May 2007

“Unreasonable effectiveness” of Schwarz, cont.

Forward Poisson operator is localized and sparse
Inverse operator is locally concentrated, but dense
A coarse grid is necessary (and sufficient, for good
conditioning) to represent the coupling between a field
point and its forcing coming from nonlocal regions

Delta function, δ(x) A δ(x) A-1 δ(x)

Yale QCD Workshop, 3 May 2007

“Unreasonable effectiveness” of Schwarz, cont.

Green’s functions for the “good Helmholtz” operator
on the unit interval, shown with four increasing
diagonal shifts, for ξ = 0.5
It is intuitively clear why the diagonally dominant
case is easy to precondition without a coarse grid
This corresponds to the implicitly differenced
parabolic system, and arises commonly in practice

[-∇2 + k2] G(x, ξ) = 0

Yale QCD Workshop, 3 May 2007

Schur complement substructuring

Given a partition

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

ΓΓΓΓΓ

Γ

f
f

u
u

AA
AA ii

i

iii

Γ
−

ΓΓΓ −≡ iiii AAAAS 1
iiii fAAfg 1−

ΓΓ −≡

Properties of the Schur complement:
smaller than original A, but generally dense
expensive to form, to store, to factor, and to solve

better conditioned than original A, for which κ(A)=O(h-2)
for a single interface, κ(S)=O(h-1)

Therefore, solve iteratively, with action of S on each Krylov
vector

Γ

gSu =Γ

Condense:

Yale QCD Workshop, 3 May 2007

Schur preconditioning
Note the factorization of the system matrix

Hence a perfect preconditioner is
111

1 0
0

−

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

S
AAI

A
i

iiiii

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= Γ

−

Γ S
AAI

IA
A

A iii

i

ii

0
0 1

⎥
⎦

⎤
⎢
⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡ −
=

−
Γ

−

−

−
Γ

−

IAA
A

S
SAAI

iii

iiiii
1

1

1

11 0
0

Yale QCD Workshop, 3 May 2007

Schur preconditioning
Let M-1 be any good preconditioner for S
Let

Then B-1 is a good preconditioner for A, for recall

111
1 0~

0

~ −

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

M
AAIB

i

iiiii

Γ

111
1 0

0

−

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

S
AAI

A
i

iiiii

Yale QCD Workshop, 3 May 2007

Schur preconditioning

So, instead of , use full system

Here, solves with may be done approximately
since all degrees of freedom are retained
Once this simple block decomposition is understood,
everything boils down to two more profound
questions:

How to approximate S cheaply

How should the relative quality of M and compare

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

Γ

−

ΓΓΓΓ

Γ−

f
f

B
u
u

AA
AA

B ii

i

iii 11

iiA

gMSuM 11 −
Γ

− =

iiA~

Yale QCD Workshop, 3 May 2007

Schur preconditioning

How to approximate S cheaply?
Many techniques for a single interface
Factorizations of narrow band approximations
Spectral (FFT-implementable) decompositions
Algebraic “probing” of a specified sparsity pattern for
inverse

For separator sets more complicated than a single
interface, we componentize, creating the
preconditioner of the union from the sum of
preconditioners of the individual pieces

Yale QCD Workshop, 3 May 2007

Schwarz-on-Schur

Beyond a simple interface, preconditioning the Schur
complement is complex in and of itself; Schwarz is
used on the reduced problem
Neumann-Neumann

Balancing Neumann-Neumann
))()((1

0
11

0
1

0
1 −−−−− −Σ−+= SMIDRSRDSMIMM iii

T
iii

iii
T
iii DRSRDM 11 −− Σ=

Numerous other variants allow inexact subdomain solves,
combining additive Schwarz-like preconditioning of the
separator set components with inexact subdomain
solves on the subdomains

Yale QCD Workshop, 3 May 2007

As an illustration of the algorithmic structure, we
consider the 2D Bramble-Pasciak-Schatz (1984)
preconditioner for the case of many subdomains

Schwarz-on-Schur

Yale QCD Workshop, 3 May 2007

⎥
⎦

⎤
⎢
⎣

⎡
=

VV
T
EV

EVEE

SS
SS

S

)()(11 −−= hHOSκ
)()(1−= hOSκ

For this case , which is not as
good as the single interface case, for which
The Schur complement has the block structure

for which the following block diagonal preconditioner
improves conditioning only to

Note that we can write M-1 equivalently as

Schwarz-on-Schur

jjjjiiii Vj VV
T
VEi EE

T
E RSRRSRM ∑∑ −−− += 111

⎥
⎦

⎤
⎢
⎣

⎡
=

−

−
−

1

1
1

0
0

VV

EE

S
S

M

))(log(122 −− HhHO

Yale QCD Workshop, 3 May 2007

))(log1()(121 −− += HhCSMκ

If we replace the diagonal vertex term of M-1 with a
coarse grid operator

then

where C may still retain dependencies on other bad
parameters, such as jumps in the diffusion coefficients
The edge term can be replaced with cheaper components
There are numerous variations in 2D and 3D that
conquer various additional weaknesses

Schwarz-on-Schur

HH
T
HEi EE

T
E RARRSRM

iiii

111 −−− += ∑

Yale QCD Workshop, 3 May 2007

Schwarz polynomials

Polynomials of Schwarz projections that are combinations of
additive and multiplicative may be appropriate for certain
implementations
We may solve the fine subdomains concurrently and follow with a
coarse grid (redundantly/cooperatively)

)(1 AufBuu ii −Σ+← −

)(1
0 AufBuu −+← −

))((11
0

1
0

1 −−−− Σ−+= ii BABIBB
This leads to algorithm “Hybrid II” in S-B-G’96:

Convenient for “SPMD” (single prog/multiple data)

Yale QCD Workshop, 3 May 2007

Overarching scaling question:
Can we scale to P = 10 5 and beyond, as required by the
DOE petascale roadmaps?? It depends….
The answer is strongly tied to the number of gridpoints per
processor (surface-to-volume ratio) [Fox et al., 1988, Gustafson et al.
1988 (1st Gordon Bell Pr.)]

For the mesh-based PDE/lattice solves under consideration,

N / P ~ 1000—10000 points per processor

is sufficient, given current day parameters.

10 8 - 10 9 , or 5123 -10243

is the minimum number of points to scale to P = 10 5

P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Scaling meshed-based codes to petaflop/s

Three issues —
Parallelism — scaling to P =105

Algorithmic scaling —
Linear system solves
Discretizations

Single node performance

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Model assumptions
P-processor solution time:

Non-overlapping comp./comm: TP = TA(P) + TC(P)
— maximum time savings with overlap is 2x
— pales in comparison to 100,000x from P-fold parallelism.

TA(P) = TA(1)/P — total arithmetic cost
— assumes perfect load balance, etc. for local work.

TC(P) — total communication cost:
Assume linear message cost: tc(m) = (α + β m) * ta

m = number of 64-bit words
ta = representative (observable) time for c=a*b
α = nondimensional latency (α := α∗ / ta)
β = nondimensional inverse-bandwidth (β := β∗ / ta)

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Communication performance
Communication performance has improved by
orders of magnitude over the years…

Linear communication model :
1991 tc (m) = α∗ + β∗ m, m: 64-bit words

Nondimensionalize by ta [c = a*b] :

tc (m) = (α + β m) ta
1996

α = α* / ta , β = β* / ta
2005

words (64-bit)

tim
e

 (s
ec

)

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Communication performance
Communication performance has improved by orders of magnitude
over the years
Computational rates have also improved… (reduced ta)
Net result is that programming models that were valid 20 years ago are
still valid today, and will likely remain so (for many reasons….)

1991

1996

2005

words (64-bit) words (64-bit)

tim
e

 (s
ec

)

tim
e

 /
 t a

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

History of nondimensional machine parameters
YEAR ta (μs) α∗ β∗ α β m2 MACHINE .
1986 50.00 5960. 64 119.2 1.3 93 Intel iPSC-1 (286)
1987 .333 5960. 64 18060 192 93 Intel iPSC-1/VX
1988 10.00 938. 2.8 93.8 .28 335 Intel iPSC-2 (386)
1988 .250 938. 2.8 3752 11 335 Intel iPSC-2/VX
1990 .100 80. 2.8 800 28 29 Intel iPSC-i860
1991 .100 60. .80 600 8 75 Intel Delta
1992 .066 50. .15 758 2.3 330 Intel Paragon
1995 .020 60. .27 3000 15 200 IBM SP2 (BU96)
1996 .016 30. .02 1800 1.25 1500 ASCI Red 333
1998 .006 14. .06 2300 10 230 SGI Origin 2000
1999 .005 20. .04 4000 8 375 Cray T3E/450
2005 .002 2. .013 1000 6.5 154 BGL/ANL

m2 := α / β ~ message size twice cost of single-word message
ta based on matrix-matrix products of order 10—13

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Three definitions of “efficiency”
For any iterative method,

“Convergence efficiency”

“Implementation efficiency”

Overall efficiency

“Ideal” is unity for all three measures

)()(# iterpertimeitersoftime ×=

)(#
)(#

large

small
conv Pforitersof

Pforitersof
=η

large

small

large

small
impl)(

)(
P
P

Pforiterpertime
Pforiterpertime

×=η

large

small

large

small
implconv)(

)(
P
P

Pfortime
Pfortime

×=×= ηηη

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Mesh-based algorithms
Consider ∇ 2 u = f with finite-volume, difference, or
element schemes

Point Jacobi iteration (7-point stencil): ui = aii fi + Σj aij uj

— Work: TaJ ~ 14 N/P ta

— Communication: TcJ ~ (6 + (N/P) 2/3 (1/ m2)) α ta

— For fixed N/P, Jacobi implementation efficiency scales independent of P.

— However, algorithmic scaling is poor – a more communication
intensive approach is required:

– conjugate gradient iteration, multigrid, etc.

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Mesh-based algorithms

Point Jacobi iteration (7-point stencil): ui = aii fi + Σj aij uj
— Work: TaJ ~ 14 N/P ta

— Communication: TcJ ~ (6 + (N/P) 2/3 (1/ m2)) α ta

Conjugate gradient iteration (7-point stencil):
— Work: TaCG ~ 27 N/P ta

— Communication: TcCG ~ TcJ + 4 log2 P α ta

Multigrid-preconditioned conjugate gradient iteration:
— Work: TaMG ~ 42 N/P ta

— Communication: TcMG ~ TcCG + log2 (N/P)1/3 α ta

Plus coarse-grid solve:

— Std. “fast” coarse-grid solve: Tstd ~ 2 log2 P (1 + P/m2) α ta

— Ac
-1 = XXT coarse-grid solve: TXXt ~ 2 log2 P (1 + 2.5/m2 P2/3) α ta

(Tufo & F, JDPC 01)

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Mesh-based scaled-speedup models
Jacobi iteration scales, but will not scale algorithmically
The inner-products for conjugate gradient do not pose a
significant difficulty (on Blue Gene – a different story on
seaborg…)
The coarse-grid solve for multigrid can be a significant
communication bottleneck, unless fast algorithms are used.

N/P = 10 3 N/P = 10 4

es
tim

at
ed

 p
ar

al
le

l e
ffi

ci
en

cy

P P

— Jacobi
— Conj. Grad.

— Multigrid,
XXT

— Multigrd, std.

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Scaling conclusions
Scaling to 105 processors is possible:
— provided # of points/proc. ~ 103 – 104

— assuming current-day communication parameters
— applies to nearest-neighbor algorithms and,

remarkably,
to all-to-all algorithms, given sufficient minimum
bisection bandwidth (3D interconnect suffices)

— problem-dependent concerns:
mesh topology, locality of boundary

conditions, I/O, etc.

c/o P. Fischer, ANL

Yale QCD Workshop, 3 May 2007

Algebraic multigrid a key algorithmic technology
Discrete operator defined for finest grid by the application, itself, and for many
recursively derived levels with successively fewer degrees of freedom, for solver
purposes
Unlike geometric multigrid, AMG not restricted to problems with “natural”
coarsenings derived from grid alone

Optimality (cost per cycle) intimately tied to the ability to coarsen
aggressively
Convergence scalability (number of cycles) and parallel efficiency
also sensitive to rate of coarsening

U. M. Yang, LLNL

Solvers are scaling:
algebraic multigrid (AMG) on BG/L (hypre)

Figure shows weak scaling result for AMG out to
120K processors, with one 25×25×25block per
processor (up to 1.875B dofs) procs

se
c

While much research and
development remains, multigrid
will clearly be practical at BG/P-
scale concurrency

fu =Δ−

Yale QCD Workshop, 3 May 2007

State of the art
Domain decomposition is the dominant paradigm in contemporary
terascale PDE simulation
Several freely available software toolkits exist, and successfully scale to
thousands of tightly coupled processors for problems on quasi-static
meshes
Concerted efforts underway (in SciDAC) to make elements of these
toolkits interoperate, and to allow expression of the best methods, which
tend to be modular, hierarchical, recursive, and above all — adaptive!
Many challenges loom at the “next scale” of computation
Implementation of domain decomposition methods on parallel
computers has inspired many useful variants of domain decomposition
methods
The past few years have produced an incredible variety of interesting
results (in both the continuous and the discrete senses) in domain
decomposition methods, with no slackening in sight

Yale QCD Workshop, 3 May 2007

Closing inspiration

“… at this very moment the search is on – every numerical analyst
has a favorite preconditioner, and you have a perfect chance to
find a better one.”

- Gil Strang (1986)

Yale QCD Workshop, 3 May 2007

More on domain decomposition
18th International Conference

January 12th to 17th 2008
Jerusalem (Hebrew University)

Web home
ddm.org
Freely downloadable papers, bibtex resources, scientific
contacts

