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Happy Birthday, Vito
Born 3 May 1860 (Ancona)
PhD Physics, 1882 (Pisa)
Invented the idea of a 
“functional” in 1883
Wrote on “Volterra” integral 
equations, 1884-1892
Worked on population biology, 
predator-prey systems, cf. 
1918
Abandoned Italy under 
fascism for Paris in 1931
Died 11 Oct 1940 (Rome)

Vito Volterra
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Definition and motivation

Domain decomposition (DD) is a “divide and 
conquer” technique for arriving at the solution of 
problem defined over a domain from the solution of 
related problems posed on subdomains
Motivating assumption #1: the solution of the 
subproblems is qualitatively or quantitatively 
“easier” than the original
Motivating assumption #2: the original problem does 
not fit into the available memory space
Motivating assumption #3 (parallel context): the 
subproblems can be solved with some concurrency
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Remarks on definition

“Divide and conquer” is not a fully satisfactory 
description

“divide, conquer, and combine” is better
combination is often through iterative means

True “divide-and-conquer” (only) algorithms are 
rare in computing (unfortunately)
It might be preferable to focus on “subdomain 
composition” rather than “domain decomposition”

We often think we know all about “two” because two is “one and 
one”.  We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)
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Remarks on definition

Domain decomposition has generic and specific 
senses within the universe of parallel algorithms

generic sense: any data decomposition (considered in 
contrast to task decomposition)
specific sense: the domain is the domain of definition of an 
operator equation (differential, integral, algebraic)

In a generic sense the process of constructing a 
parallel program consists of

Decomposition into tasks
Assignment of tasks to processes
Orchestration of processes

Communication and synchronization

Mapping of processes to processors
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Subproblem structure

The subdomains may be of the same or 
different dimensionality as the original

2D
2D

2D

1D
0D
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Plan of presentation
Imperative of domain decomposition (DD) for 
terascale computing
Basic DD algorithmic concepts

Schwarz
Schur
Schwarz-Schur combinations

Basic DD convergence and scaling properties
Comparison of DD and multilevel 
preconditioners in parallel (c/o P. Fischer)
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Prime sources for domain decomposition
1996 1997 2001 2004
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Other sources for domain decomposition

+ DDM.ORG and other proceedings volumes, 1988-2006

1992
1994 1995 2001

XVI

Olof Widlund & David Keyes

55
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Algorithmic requirements from architecture

Must run on physically distributed memory units 
connected by message-passing network, each serving 
one or more processors with multiple levels of cache 

T3E

“horizontal” aspects “vertical” aspects
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Platforms capable of 
peak petaflop/s by 2009

< $100M BG

Including 288TB

~2.3MW P.01-.03131,072 cpus
2.2x to PF

294,912 cpus

Blue Gene L/P 

> $150M x86

+memory

~6MW x86QC2.6-8.08000 cpus
12x to PF

~100,000 cpus

Clusters 
x86-64/AMD64

>$170M P6

+memory

~9.4MW P61.310240 cpus
7x to PF

~72,000 cpus

IBM Power5/6

>$150M XT4

+memory

~8MW XT4~.1 - ~110880 cpus
10x to PF

~100,000 cpus

Cray XT3/XT4

Estimated 
System

Cost

Power
Consumption 

@ 1 PF/s

Failures per 
Month

Per TF/s

Scale
Demonstrated
Factor to PF/s

c/o Rick Stevens, ANL
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Overview of laboratory plans

Cray XT 
Lawrence Berkeley
Oak Ridge
Sandia

IBM BlueGene
Argonne
Lawrence Livermore

IBM Cell
Los Alamos

Caveat: not all of the plans are approved for funding
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Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these

Domain decomposition also “natural”
for software engineering

Fortunate that its theory was built 
in advance of requirements!
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Contemporary interest

Goal is algorithmic scalability: 
fill up memory of arbitrarily large machines to 
increase resolution, while preserving nearly constant* 
running times with respect to proportionally smaller 
problem on one processor

*at worst logarithmically growing



Yale QCD Workshop, 3 May 2007

Two definitions of scalability

“Strong scaling”
execution time decreases in 
inverse proportion to the 
number of processors
fixed size problem overall

“Weak scaling”
execution time remains constant, 
as problem size and processor 
number are increased in 
proportion
fixed size problem per processor
also known as “Gustafson 
scaling”

T  

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0
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Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and 
incompressible Euler and Navier-Stokes flows 
Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes 
43min

3072 nodes 
2.5min, 
226Gf/s

15µs/unknown 
70% efficient
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c/o C. Farhat, Stanford

Finite Element Tearing and Interconnection (FETI) algorithm for 
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante
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Decomposition strategies for Lu=f  in Ω

Operator decomposition

Function space decomposition

Domain decomposition

∑=
k

kLL

∑∑ Φ=Φ=
k

kk
k

kk uuff ,

kk Ω=Ω U
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Parabolic PDE example
Continuous

Semi-discrete in time

Spatial discretization

fu
t
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∂ )( 2
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fkuku
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Operator decomposition

Consider ADI
fuyux

kk II +−=+ + )()2/1( ][][ 2/2/ LL ττ

fuxuy
kk II +−=+ ++ )2/1()1( ][][ 2/2/ LL ττ

Iteration matrix consists of four multiplicative 
substeps per timestep

two sparse matrix-vector multiplies
two sets of unidirectional bandsolves

Parallelism within each substep
But global data exchanges between bandsolve substeps
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Function space decomposition

Consider a spectral Galerkin method
),()(),,(

1
yxtatyxu j

N

j
j Φ= ∑

=

Nifuu iiidt
d ,...,1),,(),(),( =Φ+Φ=Φ L

Nifa ijjijdt
da

jij
j ,...,1),,(),(),( =Φ+ΦΦ∑=ΦΦ∑ L

fMKaMdt
da 11 −− +=

Method-of-lines system of ODEs
Perhaps                                                        are diagonal 
matrices 
Parallelism across spectral index
But global data exchanges to transform back to 
physical variables at each step

)],[()],,[( ijij KM ΦΦ≡ΦΦ≡ L
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SPMD parallelism w/domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”
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DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem
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Digression for notation’s sake
We need a convenient notation for 
mapping vectors (representing 
discrete samples of a continuous 
field) from full domain to subdomain 
and back
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Let Ri be a Boolean operator 
that extracts the elements of 
the ith subdomain from the 
global vector
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into the global vector, 
padding with zeros
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Schwarz domain decomposition method

Consider restriction and extension 
operators for subdomains,           ,      
and for possible coarse grid,
Replace discretized                   with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=
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Krylov bases for sparse systems

E.g., conjugate gradients (CG) for symmetric, positive definite 
systems, and generalized minimal residual (GMRES) for 
nonsymmetry or indefiniteness 
Krylov iteration is an algebraic projection method for converting 
a high-dimensional linear system into a lower-dimensional linear 
system

AVWH T≡
=

=

bAx =
=

bWg T=

=

Vyx = =
gHy =
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Remember this formula of Schwarz …

i
T
ii

T
ii RARRRB 11 )( −− ∑=

For  a “good” approximation, B-1, to A-1:
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Now, let’s compare!

Operator decomposition (ADI)
natural row-based assignment requires global all-to-
all, bulk data exchanges in each step (for transpose)

Function space decomposition (Fourier)
Natural mode-based assignment requires global all-to-
all, bulk data exchanges in each step (for transform)

Domain decomposition (Schwarz)
Natural domain-based assignment requires local
surface data exchanges, global reductions, and 
optional small global problem

(Of course, domain decomposition can be interpreted 
as a special operator or function space decomposition)
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Schwarz subspace decomposition
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Schwarz subspace decomposition
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Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, communication, synchronization
Mapping processes to processors

c/o D. E. Culler, Berkeley
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Krylov-Schwarz parallelization summary
Decomposition into concurrent tasks

by domain

Assignment of tasks to processes
typically one subdomain per process

Orchestration of communication between processes
to perform sparse matvec – near neighbor communication
to perform subdomain solve – nothing
to build Krylov basis – global inner products
to construct best fit solution – global sparse solve (redundantly)

Mapping of processes to processors
typically one process per processor
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Krylov-Schwarz kernel in parallel

local 
scatter

Jac-vec 
multiply

precond 
sweep

daxpy inner     
product

Krylov 
iteration

…

What happens if, for instance, in this 
(schematicized) iteration, arithmetic 
speed is doubled, scalar all-gather is 
quartered, and local scatter is cut by 
one-third?  Each phase is 
considered separately. Answer is to 
the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M
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Krylov-Schwarz compelling in serial, too
As successive workingsets “drop” into a level of memory, 
capacity (and with effort conflict) misses disappear, leaving 
only compulsory misses, reducing demand on main memory 
bandwidth
Cache size is not easily manipulated, but domain size is

Traffic decreases as 
cache gets bigger or 
subdomains get smaller
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Estimating scalability of stencil computations 
Given complexity estimates of the leading terms of:

the concurrent computation (per iteration phase)
the concurrent communication
the synchronization frequency

And a bulk synchronous model of the architecture including:
internode communication (network topology and protocol reflecting horizontal 
memory structure)
on-node computation (effective performance parameters including vertical 
memory structure)

One can estimate optimal concurrency and optimal execution 
time

on per-iteration basis, or overall (by taking into account any granularity-
dependent convergence rate)
simply differentiate time estimate in terms of (N,P) with respect to P, equate to 

zero and solve for P in terms of N
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Estimating 3D stencil costs (per iteration)

grid points in each 
direction n, total work 
N=O(n3)
processors in each 
direction p, total procs
P=O(p3)
memory per node 
requirements O(N/P)

concurrent execution time per 
iteration A n3/p3

grid points on side of each 
processor subdomain n/p
Concurrent neighbor commun. 
time per iteration B n2/p2

cost of global reductions in each 
iteration  C log p or C p(1/d)

C includes synchronization 
frequency

same dimensionless units for 
measuring A, B, C 

e.g., cost of scalar floating point 
multiply-add
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3D stencil computation illustration
Rich local network, tree-based global reductions

total wall-clock time per iteration

for optimal p,            , or  

or (with                        ),

without “speeddown,” p can grow with n
in the limit as 
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3D stencil computation illustration 
Rich local network, tree-based global reductions

optimal running time

where

limit of infinite neighbor bandwidth, zero neighbor latency (   )

(This analysis is on a per iteration basis; complete analysis 
multiplies this cost by an iteration count estimate that generally 
depends on n and p.)

( ),log))(,( 23 nCBAnpnT opt ρ
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Scalability results for DD stencil computations

With tree-based (logarithmic) global 
reductions and scalable nearest neighbor 
hardware:

optimal number of processors scales linearly with 
problem size

With 3D torus-based global reductions and 
scalable nearest neighbor hardware:

optimal number of processors scales as three-fourths
power of problem size (almost “scalable”)

With common network bus (heavy 
contention):

optimal number of processors scales as one-fourth
power of problem size (not “scalable”)
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Resource scaling for PDEs
For 3D problems, work is proportional to four-thirds power 
of  memory, because

for equilibrium problems, work scales with problem size times 
number of iteration steps -- proportional to resolution in single 
spatial dimension
for evolutionary problems, work scales with problems size times 
number of time steps -- CFL arguments place latter on order of 
spatial resolution, as well

Proportionality constant can be adjusted over a very wide 
range by both discretization (high-order implies more work 
per point and per memory transfer) and by algorithmic 
tuning
Machines designed for PDEs can be “memory-thin”
If frequent time frames are to be captured, other resources -
- disk capacity and I/O rates -- must both scale linearly with 
work, more stringently than for memory.
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Factoring convergence rate into estimates 

In terms of N and P, where for d-dimensional 
isotropic problems, N=h-d and P=H-d, for mesh 
parameter h and subdomain diameter H, 
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov-Schwarz iterative methods typically converge in a 
number of iterations that scales as the square-root of the 
condition number of the Schwarz-preconditioned system
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Where do these results come from?
Point Jacobi result is well known (see any book on the 
numerical analysis of elliptic problems)
Subdomain Jacobi result has interesting history

Was derived independently from functional analysis, linear algebra, and 
graph theory

Schwarz theory is neatly and abstractly summarized in Section 
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli & 
Widlund (2004)

condition number, κ ≤ ω [1+ρ(ε)] C0
2

C0
2 is a splitting constant for the subspaces of the decomposition

ρ(ε) is a measure of the orthogonality of the subspaces
ω is a measure of the approximation properties of the subspace solvers 
(can be unity for exact subdomain solves)
These properties are estimated for different subspaces, different 
operators, and different subspace solvers and the “crank” is turned
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Comments on the Schwarz results
Original basic Schwarz estimates were for:

self-adjoint elliptic operators
positive definite operators
exact subdomain solves, 
two-way overlapping with 
generous overlap, δ=O(H) (original 2-level result was O(1+H/δ))

Subsequently extended to (within limits):
nonself-adjointness (e.g, convection) 
indefiniteness (e.g., wave Helmholtz) 
inexact subdomain solves
one-way overlap communication (“restricted additive Schwarz”)
small overlap

T
ii RR ,

1−
iA
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Comments on the Schwarz results, cont.

Theory still requires “sufficiently fine” coarse mesh
However, coarse space need not be nested in the fine space or in the 
decomposition into subdomains

Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

Wave Helmholtz (e.g., acoustics) is delicate at high 
frequency:

standard Schwarz Dirichlet boundary conditions can lead to 
undamped resonances within subdomains,
remedy involves Robin-type transmission boundary conditions 
on subdomain boundaries,

0=Γu

0)/( =∂∂+ Γnuu α

— Yogi Berra
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1 proc

Illustration of 1-level vs. 2-level tradeoff

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition 
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver. 
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Temperature iso-lines 
on slice plane, velocity 
iso-surfaces and 
streamlines in 3D

N.45

N.24

N0

2 – Level DD
Exact Coarse 
Solve

2 – Level DD  
Approx. Coarse 
Solve

1 – Level 
DD3D Results

512 procs

Total Unknowns

A
vg

. I
te
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ew
to

n 
St

ep

Thermal Convection 
Problem (Ra = 1000)

c/o J. Shadid and R. Tuminaro
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“Unreasonable effectiveness” of Schwarz
When does the sum of partial inverses equal the 
inverse of the sums?  When the decomposition is right!

Good decompositions are a compromise between 
conditioning and parallel complexity, in practice

{ }ir
iii raAr = T

iii Arra =
Let        be a complete set of orthonormal row 
eigenvectors for A :                        or

ii
T

ii rarA Σ=
Then

i
T

ii
T

iiii
T

ii rArrrrarA 111 )( −−− Σ=Σ=
and

— the Schwarz formula!
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“Unreasonable effectiveness” of Schwarz, cont.

Forward Poisson operator is localized and sparse
Inverse operator is locally concentrated, but dense
A coarse grid is necessary (and sufficient, for good 
conditioning) to represent the coupling between a field 
point and its forcing coming from nonlocal regions

Delta function, δ(x) A δ(x) A-1 δ(x)
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“Unreasonable effectiveness” of Schwarz, cont.

Green’s functions for the “good Helmholtz” operator 
on the unit interval, shown with four increasing 
diagonal shifts, for ξ = 0.5
It is intuitively clear why the diagonally dominant 
case is easy to precondition without a coarse grid
This corresponds to the implicitly differenced 
parabolic system, and arises commonly in practice

[ -∇2 + k2 ] G(x, ξ) = 0
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Schur complement substructuring

Given a partition
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Properties of the Schur complement:
smaller than original A, but generally dense
expensive to form, to store, to factor, and to solve

better conditioned than original A, for which κ(A)=O(h-2)
for a single interface, κ(S)=O(h-1)

Therefore, solve iteratively, with action of S on each Krylov 
vector

Γ

gSu =Γ

Condense:
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Schur preconditioning
Note the factorization of the system matrix 

Hence a perfect preconditioner is
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Schur preconditioning
Let  M-1 be any good preconditioner for  S
Let                                           

Then B-1 is a good preconditioner for A, for recall
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Schur preconditioning

So, instead of                               , use full system 

Here, solves with       may be done approximately 
since all degrees of freedom are retained
Once this simple block decomposition is understood, 
everything boils down to two more profound 
questions:

How to approximate  S cheaply

How should the relative quality of  M and         compare
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Schur preconditioning

How to approximate  S cheaply?
Many techniques for a single interface
Factorizations of narrow band approximations
Spectral (FFT-implementable) decompositions
Algebraic “probing” of a specified sparsity pattern for 
inverse

For separator sets more complicated than a single 
interface, we componentize, creating the 
preconditioner of the union from the sum of 
preconditioners of the individual pieces



Yale QCD Workshop, 3 May 2007

Schwarz-on-Schur

Beyond a simple interface, preconditioning the Schur 
complement is complex in and of itself; Schwarz is 
used on the reduced problem
Neumann-Neumann

Balancing Neumann-Neumann
))()(( 1

0
11

0
1

0
1 −−−−− −Σ−+= SMIDRSRDSMIMM iii

T
iii

iii
T
iii DRSRDM 11 −− Σ=

Numerous other variants allow inexact subdomain solves, 
combining additive Schwarz-like preconditioning of the 
separator set components with inexact subdomain 
solves on the subdomains
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As an illustration of the algorithmic structure, we 
consider the 2D Bramble-Pasciak-Schatz (1984) 
preconditioner for the case of many subdomains

Schwarz-on-Schur
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For this case                                      , which is not as 
good as the single interface case, for which
The Schur complement has the block structure

for which the following block diagonal preconditioner 
improves conditioning only to 

Note that we can write M-1 equivalently as

Schwarz-on-Schur
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))(log1()( 121 −− += HhCSMκ

If we replace the diagonal vertex term of M-1 with a 
coarse grid operator

then

where C may still retain dependencies on other bad 
parameters, such as jumps in the diffusion coefficients
The edge term can be replaced with cheaper components
There are numerous variations in 2D and 3D that 
conquer various additional weaknesses

Schwarz-on-Schur
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Schwarz polynomials

Polynomials of Schwarz projections that are combinations of 
additive and multiplicative may be appropriate for certain 
implementations
We may solve the fine subdomains concurrently and follow with a 
coarse grid (redundantly/cooperatively) 
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This leads to algorithm “Hybrid II” in S-B-G’96:                                       

Convenient for “SPMD” (single prog/multiple data)
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Overarching scaling question:
Can we scale to P = 10 5 and beyond, as required by the 
DOE petascale roadmaps?? It depends….
The answer is strongly tied to the number of gridpoints per 
processor (surface-to-volume ratio) [Fox et al., 1988, Gustafson et al. 
1988 (1st Gordon Bell Pr.)]

For the mesh-based PDE/lattice solves under consideration, 

N / P ~ 1000—10000 points per processor 

is sufficient, given current day parameters.

10 8 - 10 9 , or 5123 -10243

is the minimum number of points to scale to P = 10 5

P. Fischer, ANL
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Scaling meshed-based codes to petaflop/s

Three issues —
Parallelism — scaling to P =105

Algorithmic scaling —
Linear system solves
Discretizations

Single node performance

c/o P. Fischer, ANL
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Model assumptions
P-processor solution time:

Non-overlapping comp./comm: TP = TA(P) + TC(P)
— maximum time savings with overlap is 2x 
— pales in comparison to 100,000x from P-fold parallelism.

TA(P) = TA(1)/P — total arithmetic cost
— assumes  perfect load balance, etc. for local work. 

TC(P)  — total communication cost:
Assume linear message cost:   tc(m) =  ( α + β m ) * ta

m = number of 64-bit words
ta = representative (observable) time for  c=a*b
α = nondimensional latency  (α  := α∗ / ta )
β  = nondimensional inverse-bandwidth  (β := β∗ / ta )

c/o P. Fischer, ANL
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Communication performance
Communication performance has improved by 
orders of magnitude over the years…

Linear communication model :
1991  tc (m) =  α∗ + β∗ m,   m: 64-bit words

Nondimensionalize by ta [c = a*b] :

tc (m) =  (α + β m ) ta
1996

α = α* / ta ,  β = β* / ta
2005

words  (64-bit)                              

tim
e 

 (s
ec

)

c/o P. Fischer, ANL
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Communication performance
Communication performance has improved by orders of magnitude 
over the years
Computational rates have also improved… ( reduced  ta )
Net result is that programming models that were valid 20 years ago are 
still valid today, and will likely remain so (for many reasons….)

1991

1996

2005

words  (64-bit)                                              words (64-bit)

tim
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 (s
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tim
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c/o P. Fischer, ANL
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History of nondimensional machine parameters
YEAR     ta (μs)    α∗           β∗ α         β m2 MACHINE              .
1986      50.00  5960.   64   119.2    1.3      93   Intel iPSC-1 (286)
1987       .333   5960.   64  18060   192      93   Intel iPSC-1/VX
1988      10.00   938.   2.8     93.8    .28    335   Intel iPSC-2 (386)
1988       .250    938.   2.8    3752     11    335   Intel iPSC-2/VX       
1990       .100     80.    2.8      800     28      29   Intel iPSC-i860
1991       .100     60.    .80      600       8      75   Intel Delta
1992       .066     50.    .15      758    2.3    330   Intel Paragon
1995       .020     60.    .27    3000     15    200   IBM SP2 (BU96)
1996       .016     30.    .02    1800  1.25  1500   ASCI Red 333
1998       .006     14.    .06    2300     10    230   SGI Origin 2000
1999       .005     20.    .04    4000       8    375   Cray T3E/450
2005       .002      2.   .013    1000    6.5    154   BGL/ANL

m2 :=  α / β ~  message size twice cost of single-word message
ta based on matrix-matrix products of order 10—13

c/o P. Fischer, ANL



Yale QCD Workshop, 3 May 2007

Three definitions of “efficiency”
For any iterative method, 

“Convergence efficiency”

“Implementation efficiency”

Overall efficiency

“Ideal” is unity for all three measures
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c/o P. Fischer, ANL
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Mesh-based algorithms
Consider ∇ 2 u = f with finite-volume, difference, or 
element schemes

Point Jacobi iteration (7-point stencil):     ui = aii fi + Σj aij uj

— Work: TaJ ~  14 N/P ta

— Communication: TcJ ~  ( 6 +  (N/P) 2/3 (1/ m2 ) ) α ta

— For fixed N/P,  Jacobi implementation efficiency scales independent of P. 

— However, algorithmic scaling  is poor – a more communication
intensive approach is required:

– conjugate gradient iteration, multigrid, etc.

c/o P. Fischer, ANL
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Mesh-based algorithms

Point Jacobi iteration (7-point stencil): ui = aii fi + Σj aij uj
— Work: TaJ ~  14 N/P ta

— Communication: TcJ ~  ( 6 +  (N/P) 2/3 (1/ m2 ) ) α ta

Conjugate gradient iteration (7-point stencil):                  
— Work: TaCG ~  27 N/P ta

— Communication: TcCG ~ TcJ + 4 log2 P α ta

Multigrid-preconditioned conjugate gradient iteration:
— Work: TaMG ~  42 N/P ta

— Communication: TcMG ~ TcCG + log2 (N/P)1/3 α ta

Plus coarse-grid solve:

— Std. “fast” coarse-grid solve: Tstd ~ 2 log2 P ( 1 + P/m2 ) α ta

— Ac
-1 = XXT coarse-grid solve: TXXt ~ 2 log2 P ( 1 + 2.5/m2 P2/3 ) α ta

(Tufo & F, JDPC 01)

c/o P. Fischer, ANL
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Mesh-based scaled-speedup models
Jacobi iteration scales, but will not scale algorithmically
The inner-products for conjugate gradient do not pose a 
significant difficulty (on Blue Gene – a different story on 
seaborg…)
The coarse-grid solve for multigrid can be a significant 
communication bottleneck, unless fast algorithms are used.

N/P = 10 3 N/P = 10 4
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— Jacobi
— Conj. Grad.

— Multigrid, 
XXT

— Multigrd, std.

c/o P. Fischer, ANL
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Scaling conclusions
Scaling to 105 processors is possible:
— provided # of points/proc. ~ 103 – 104

— assuming current-day communication parameters
— applies to nearest-neighbor algorithms and, 

remarkably,
to all-to-all algorithms, given sufficient minimum 
bisection bandwidth (3D interconnect suffices)

— problem-dependent concerns:  
mesh topology, locality of boundary 

conditions, I/O, etc.

c/o P. Fischer, ANL
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Algebraic multigrid a key algorithmic technology
Discrete operator defined for finest grid by the application, itself, and for many 
recursively derived levels with successively fewer degrees of freedom, for solver 
purposes
Unlike geometric multigrid, AMG not restricted to problems with “natural”
coarsenings derived from grid alone

Optimality (cost per cycle) intimately tied to the ability to coarsen 
aggressively
Convergence scalability (number of cycles) and parallel efficiency 
also sensitive to rate of coarsening

U. M. Yang, LLNL

Solvers are scaling:
algebraic multigrid (AMG) on BG/L (hypre)

Figure shows weak scaling result for AMG out to 
120K processors, with one 25×25×25block per 
processor (up to 1.875B dofs) procs

se
c

While much research and 
development remains, multigrid 
will clearly be practical at BG/P-
scale concurrency

fu =Δ−
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State of the art
Domain decomposition is the dominant paradigm in contemporary 
terascale PDE simulation 
Several freely available software toolkits exist, and successfully scale to 
thousands of tightly coupled processors for problems on quasi-static 
meshes
Concerted efforts underway (in SciDAC) to make elements of these
toolkits interoperate, and to allow expression of the best methods, which 
tend to be modular, hierarchical, recursive, and above all — adaptive!
Many challenges loom at the “next scale” of computation
Implementation of domain decomposition methods on parallel 
computers has inspired many useful variants of domain decomposition 
methods 
The past few years have produced an incredible variety of interesting 
results (in both the continuous and the discrete senses) in domain 
decomposition methods, with no slackening in sight
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Closing inspiration

“… at this very moment the search is on – every numerical analyst 
has a favorite preconditioner, and you have a perfect chance to 
find a better one.”

- Gil Strang (1986)
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More on domain decomposition
18th International Conference

January 12th to 17th 2008
Jerusalem  (Hebrew University)

Web home
ddm.org
Freely downloadable papers, bibtex resources, scientific 
contacts


