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Motivation

The spectral representation of correlation functions

Consider the vacuum correlation function associated with an operator O:

C (τ) ≡ 〈0|O(τ)O(0)|0〉.

Working in the imaginary time formalism, we may write

C (τ) = 〈0|e+HτOe−HτO|0〉,

and inserting a complete set of energy eigenstates of the Hamiltonian gives

C (τ) = 〈0|Oe−Hτ
∑
k

|k〉〈k|O|0〉

=
∑
k

|〈k|O|0〉|2e−Ekτ .
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Motivation

Rich structure available for operator construction
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Motivation

Correlated fitting

Need to perform fits of the type: (D. Toussaint)

Cfit(τ ;A,E ) = A exp(−Eτ)

A and E are the two fit parameters

Assume no autocorrelations, but take into account cross-correlations
on each configuration:

χ2(A,E ) ≡
∑
τ,τ ′

[C (τ)− Cfit(τ ;A,E )]σ̂−1
τ,τ ′ [C (τ ′)− Cfit(τ

′;A,E )]

σ̂−1
τ,τ ′ is the inverse of the estimated covariance matrix:

σ̂τ,τ ′ ≡ 1

N(N − 1)

N∑
n=1

[Cn(τ)− C̄ (τ)][Cn(τ
′)− C̄ (τ ′)],
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Motivation

Nucleon spectroscopy
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Motivation

Correlated χ2 fitting

How well do such fits perform?

How reliable are the quoted errors?

How reliable is χ2/(dof ) as a measure of goodness-of-fit?
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A Detailed Look at a Simple Example

Simple example

Two observables: y1, y2, fit to a constant α

Sample estimates: ŷ1 = 0.4, ŷ2 = 0.7

Correlation matrix known to be

σ =
1√

2.0− δ2

[
1.0 δ
δ 2.0

]
|δ| <

√
2

σ11 = 1.0 = Det(σ) > 0 (positive-definite)

Can look at
α∗(δ)← minα χ2(α, δ)

where

χ2(α, δ) =
2∑

a,b=1

(ŷa − α)σ−1
ab (δ)(ŷb − α)
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A Detailed Look at a Simple Example

Parameter estimate

In the presence of significant positive correlation,
the fit value can lie above or below both points!
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Unfortunately, this is common in LQCD correlation function fitting.
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A Detailed Look at a Simple Example

Fun with pathology

Choose δ = 1.2.

σ =
1√

2.0− (1.2)2
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A Detailed Look at a Simple Example

Is this correct?

Yes! If the points are strongly correlated, then we are likely to see
samples where both sample means fluctuate above or below the true
value

We can simulate this for fixed sample size N

In general σ ∼ 1/N

ŷa = 0.35 +
2∑

b=1

[σ1/2]ab z̃b

where
z̃a ∼ N(0, 1), Cov[z̃a, z̃b] = δab

giving
E[ŷa] = 0.35, Cov[ŷa, ŷb] = σab
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A Detailed Look at a Simple Example

Simulation, continued

ŷ =

[
ŷ1

ŷ2

]
, 1 =

[
1
1

]
χ2(α) =

1

N
(ŷ − α1)Tσ−1(ŷ − α1)

with a minimum at
d

dα
χ2

∣∣∣∣
α=α̂

= 0

giving the fit value:

α̂ =
1Tσ−1ŷ

1Tσ−11

Simple linear fit (don’t even need a minimizer), with correlations
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A Detailed Look at a Simple Example

Uncorrelated fit

Can compare to uncorrelated fit:

α̂uncorr =
ŷ1/σ11 + ŷ2/σ22

1/σ11 + 1/σ22

Note: using 1/σaa, not [σ−1]aa (there is a difference)

Expect an abnormally small χ2 because we are neglecting off-diagonal
interference in the inverse
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A Detailed Look at a Simple Example

Simulation results
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A Detailed Look at a Simple Example

Simulation results

Independently, the errors appear Gaussian
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A Detailed Look at a Simple Example

Simulation results
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A Detailed Look at a Simple Example

Goodness-of-fit

The correlated χ2 can be used for goodness-of fit tests
σ−1 is the metric in the space of D independent variables (∼ z̃a)
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A Detailed Look at a Simple Example

Goodness-of-fit

The uncorrelated χ2 is unsuitable for goodness-of-fit tests
Degrees of freedom are not independent
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Estimating the Covariance Matrix

Part III

Estimating the Covariance Matrix
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Estimating the Covariance Matrix

Serious practical obstacle

Up to now, we have assumed that we know the covariance matrix σ
for our errors

But we DO NOT know σ

We must estimate it from the data ỹia (i = 1 · · ·N, a = 1 · · ·D)

ŷa =
1

N

N∑
i=1

ỹia

σ̂ab =
1

N(N − 1)

N∑
i=1

(ỹia − ŷa)(ỹib − ŷb)

Noisy estimate of something which shifts our parameter estimates on
a per-sample basis

E[x̃ ] 6= E[x̃−1]
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Estimating the Covariance Matrix

Estimating the covariance matrix

Let yia be the elements of the N × D matrix Y

ŷ = 1
N Y T1 (D−dimensional vector)

σ̂ = 1
N(N−1)Y

TMY (D−dimensional matrix)

Where M = (I − 1
N 11T )

M is idempotent (M2 = M) and of rank N − 1:

M =
1

N


N − 1 −1 · · · −1

−1 N − 1
...

−1
. . . −1

−1 · · · −1 N − 1
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Estimating the Covariance Matrix

Rank deficiency

If N < D + 1, then Rank(σ̂) < D, and σ̂ is not invertible (rank deficient)
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Estimating the Covariance Matrix

Rank deficiency

The lowest eigenvalues are ‘repelled’ downward, even at N = D2
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Estimating the Covariance Matrix

The Frobenius matrix metric

To quantify how ‘far’ the estimated covariance matrix is from the true
covariance matrix

Frobenius metric for a D−dimensional symmetric matrix:

||M|| ≡ 1

D

D∑
a=1

D∑
b=1

m2
ab

Normalized such that

||I || = 1
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Estimating the Covariance Matrix

How good are our estimates?
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“Just do an uncorrelated fit if you don’t have the statistics.”
(or can we do better?)
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Estimating the Covariance Matrix

What happens if the covariance matrix estimate is bad?

Lattice QCD: “Oh well.. it all averages out. Mumble mumble..”

Portfolio manager on Wall Street: “Uh, boss? I just lost $4B.”

Pharmaceutical researcher (bioinformatics): “Hmm.. I think that drug
will work.

Let’s try it on the new guy.”

Look to other fields for the solution to this well defined problem.

O. Ledoit: Credit Suisse First Boston

M. Wolf: Department of Economics and Business, Universitat
Pompeu Fabra

J. Schaefer and K. Strimmer, Department of Statistics, University of
Munich
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Estimating the Covariance Matrix

Interpolation of Linear Operators

E. Stein, American Mathematical Society (1956)

A linear combination of a quiet biased estimator with a noisy
unbiased estimator is superior to both

Convexity of the Frobenius metric

Can define our covariance matrix estimate as some interpolation
between the sample estimate and the diagonal (uncorrelated) estimate

Ŝ = δV̂ + (1− δ)σ̂

We are effectively ‘shrinking’ the off-diagonal (noisy) elements:

Ŝab =

{
σ̂ab a = b

(1− δ)σ̂ab a 6= b
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Estimating the Covariance Matrix

Choosing the optimal value of δ

Want to chose δ∗ such that the inverse covariance matrix estimate is
as close as possible to the true inverse covariance matrix

δ∗ ← minδ||Ŝ−1 − σ−1||

δ∗ ← minδ||[δV̂ + (1− δ)σ̂]−1 − σ−1||

Work in progress: A closed-form expression for δ∗ exists

It is better to estimate δ∗ from the data rather than σ
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Estimating the Covariance Matrix

Shrinkage parameter

δ∗ ← minδ||[δV̂ + (1− δ)σ̂]−1 − σ−1||
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Goes roughly as δ∗ = a
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Estimating the Covariance Matrix

Before shrinking
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Estimating the Covariance Matrix

‘Shrinking’ the covariance matrix
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Estimating the Covariance Matrix

Useful at arbitrary practical D
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Real-World Data

Part IV

Real-World Data
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Real-World Data

Meson Data
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Real-World Data

Correlations are visible in the data
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Real-World Data

Visualizing the correlation

C o r r e l a t i o n  M a t r i x
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Real-World Data

Modeling the correlations

Correlations caused by physical mechanisms such as
pion and rho coupling [C. Michael, A, McKerrell]

Shouldn’t look at estimated correlation, should instead look at
time-slice coupling

C̃nτ = C (τ) +
D∑

τ ′=1

z̃nτ ′σ
1/2
τ ′τ , z̃nτ ∼ N(0, 1)

Cov[z̃nτ , z̃mτ ′ ] = δnmδττ ′

Rewrite to see coupling among time-slices

W̃nτ = σ
−1/2
ττ ′ C (τ ′) + z̃nτ (independent variables)
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Real-World Data

Don’t look at this..

C o r r e l a t i o n  M a t r i x
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Real-World Data

Look at this!

Look at σ̂−1/2 (This is unaltered sample data!)
s ^ { - 1 / 2 }
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Conclusions

Part V

Conclusions
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Conclusions

Conclusions

In the presence of correlations, uncorrelated fits poorly estimate the
errors

Correlated fitting can introduce large corrections to the estimated
central value on a per-sample basis

The estimated covariance matrix is very noisy but unbiased, while the
estimated variances are quiet but biased

Stein shrinkage provides a much better estimate of the covariance
matrix using Frobenius convexity

Work in progress: determine δ̂

Work in progress: shrink to a model, not to a diagonal matrix
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Conclusions

Any Questions?
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