Introduction to Multigrid Methods for
Differential Problems

Ira Livshits
Department of Mathematical Sciences
Ball State University
ilivshits@bsu.edu

Fourth International Workshop
on Numerical Analysis and Lattice QCD
Yale, May 3 2007



Presentation Plan

Iterative methods: convergence and smoothing rates;
Motivation to use many grids
Geometric Multigrid method
e Main components
e V-cycle
e CS scheme vs FAS scheme, FMG
Algebraic Multigrid method
Application to eigen problems



Problem in question

Lu(z) = f(z), z € Q c R?

plus some boundary conditions on 0f2.

Discretized problem (on a regular grid with mesh-size h):
Tyt — fh

plus b.c.
For now assume that L is a linear operator and L= Ais simply
a matrix.



Iterative solvers: relaxation
Goal is to solve:  Au=f
Current approximation : u'
Residual: " = f — Au"
Error: e =u—u"
Residual equation: Aet = r™

Examples of relaxation schemes: Jacobi, Gauss-Seidel, line re-
laxation, distributive relaxation (i.e., Kaczmarz).
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Before Relaxation

Different error types

BEFORE RELAXATION ERROR




Different error types: After Relaxation

POST RELAXATION ERROR




Error Fourier Analysis

Consider
02w 02w
tu=ay a2t b8y2 =/

Then in the discrete form:

e e B R N Xt e o it RS

Solving using the lexicographical Gauss-Seidel relaxation:
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Error Fourier Analysis

For the errors ¢” and e*t1 true

n—+1 n—+1 n—+1 n—+1
-tk ¥ Gk =2k k-1t Gt T 2
¢ 12 K2
Consider each error in the Fourier form:
e =Y Cgei(€1j+92/{:), en—|—1 =Y Cg+1€i(01j+92k),

where 0 = (01,62), and |61],]62| < .

(Remark: for ei(wl"”w?y), 0; = wjh)



Amplification factor

Amplification parameter (the rate of change in amplitude):

1 : :
(0) = G ae’®t + be'2]
P = CF  |2a 4 2b — ae—101 — pe—ib2|

For which (61,605), p is small 7
If a = b, for instance, for n/2 < |0] < 7 true that © < .5
Meanwhile u(0) — 1 as (61,0>) — (0,0).
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Does not always work...
For instance, if a < b, for GS p(n/2,0) — 1 as a — 0.

Use line relaxation instead:

p(0) =

|al
12(a+b—bcos 05) — ae— 01|

And then for 7/2 < |6] < 7 again p < max{5-1/2, ¢

t
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Summary for the Laplace operator

e Important reduction: n/2 < |0| <. These components cannot
be approximated on the coarse grid (2h).
Introducing smoothing factor pu:

e Slow(er) convergence 0 < |0 < w/2. These components can

be represented on the coarser grid. For instance, there
[7/4,m/2] — [r/2, 7]

i.e., will be reduced by u

From now on, the role of relaxation is to “"smooth”, i.e., reduce
error components that cannot be approximated and reduced on
the coarser grid(s).
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Multigrid Methods

Instead of annihilating error at grid h just smooth it (inexpen-
sively) and then let the coarse grid(s) do the rest.

Every Fourier error component is oscillatory on some grid H and
can be reduced there efficiently

OR

it is so smooth that can be represented on the coarsest grid with
few unknowns where direct solver is OK.

This is of course with proper communication between grids.
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Prolongation Operator

Typical P : polynomial interpolation, i.e., linear or cubic.

: : : L

o ® 2h
P=(1211/72)
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Restriction Operator

Typical R : full weighting.

R = (14 12 1/4)
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Injection Operator

Injection J:
= = =
Y Y
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Two grid cycle
Correction Scheme (Brandt, 1971)

On the fine grid, h:

Relax vy times LM = fh

Calculate residual: »* = fh — Lhyh

Restrict residual to the next grid r2" = Ryl
On the coarse grid, 2h:

Solve L2he2h — 2R

Prolongate correction to the fine grid: u” « uh 4+ Pe2h
On the fine grid , h:

Relax vy times LM = fh

17



Geometric Multigrid (MG)

Relax on APu"= "

Restrict residual

2h 2h 2h
Relaxon A e = r

Interpolate
correction
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CS vs FAS
Full Approximation Scheme (1975)

CS works only for linear L:

If L is not linear then instead of a correction, the entire solution
should be represented on each grid with the residual equation
being

LMl + ) — Lhah = P,
Warning: The coarse grid treatment should not affect part of

the solution that is not represented there.
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T Correction

To guarantee the accuracy of the coarse-grid operators instead
of solving

122k = §2h — Ryh
add 7 correction to the right-hand-side:
120y 2h = f2h 4 T}%h
where
it = L2 (Ju") — R(L"u™)

7 is called fine-to-coarse defect correction.
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Multigrid V-cycle V(vq,vo)
Full Approximation Scheme Scheme

From the finest to the coarsest grid
for m=M,...,2
Relax vq times L™y = f™
Initial coarse grid approximation: u™—1 = Jjum
Restrict residual fm—1 = R(f™m — L™my™m) 4 [m—1ym—1
end for
Coarsest grid m =1
Solve L™My™m = fm
From the coarsest to the finest grid
for m=2,... M
Coarse grid correction ™ = u™ + P(u™~1 — Ju™)
Relax vo times LMy™ = f™
end for

22



Work

Work per cycle is is O(n) for both CS and FAS
n is the size of the finest grid.
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h,=h, 2 @S/

Full Multigrid (FMG)
@ (Vo)
2 (G2 @

7 solution interpolation

; correction interpolation

b residual transfer
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FMG
Brandt (1981)

e Each sub-cycle solves the problem upto the truncation error
and then accurately interpolates solution approximation (very
good quality) to the new finest grid.

e Truncation error there is only four times smaller, one V-cycle
easily makes such reduction.

e After the FMG is done, the approximate solution is accurate
upto the truncation error on the finest grid.
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Differential eigenvalue problems and FMG
Brandt, McCormick, Ruge (1983)
Hackbush (1980)

Approach:

e Treat Az = Az as a nonlinear problem (FAS)

e Heavily use smoothness of eigenvalues and global nature of A:
a lot of good comes from very coarse grids (FMQG).

e Work: O(n) for the first eigenvalue
O(¢?n + ¢3logn) for ¢ > 1 eigenvalues. The increase is due to
orthogonalization and Ritz projection.
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More on convergence:. Relation of convergence rate with
eigenvalues of A

Assume {uq,...,un} are eigenfunctions ofA with eigenvalues
A <A <... < Ap = Aax

Consider error e = " eFu; (the residual is then r* = S \efu;).
Thus, the after one relaxation sweep,

ef"i_l — (1 - O(|>\z'|/|>wna:v|)“35’€
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Remark on the side: Helmholtz operator
Brandt, Livshits (1997)

Lu = Au+ k%u = f(z)
Null space: exp(i(kiz + koy)), k3 + k3 = k?

Slow to converge error components Le ~ O:

exp(i(wiz + woy)), w% -+ w% ~ k2

They are not smooth anymore: Cannot send them to the
coarsest grids and deal with them there just yet!
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Phase space

Basic functions: wu; = exp(i(kfz + k5y))
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Separation

Unreduced error:

e(x) =D ep(x)up(x)

l

Residual:

r(z) = ) re(@)uy(z)
‘

Instead of finding oscillatory e(xz) approximate smooth weights
eo(x)
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Helmholtz operator: finding ey(x)

Substitute the error:

Le(x) = Zungee = uyry
14 14

Separate:r(x) into r, and solve separately

Lpey =1y

and then reconstruct back

e=Ze£

14
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Algebraic Multigrid (AMG)
Brandt, McCormick, Ruge (1984)
Ruge, Stiiben (1987)

Consider a system of linear equations:

Ax = b

Assume here that A is an M-matrix: symmetric, positive definite,
a;i >0, a;; < 0,17 = 7.
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Coarse grid operator

. Geometric MG (for PDEs) : all operators approximate the
PDE.

. Algebraic MG: each next coarse operator approximates the
previous fine one

(a) unstructured grids;
(b) no PDE at all: matrices

(c) discontinuous coefficients
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AMG components

Coarse grid operator is no more a mere discretization of PDE!
e Coarse grid variables

e Prolongation operator: P, from coarse to fine, replaces fine
grid values with the coarse grid values;

e Restriction operator: R, from fine to coarse, averages fine grid
equations;

e Coarse grid operator A. (fine grid operator A is given)

Coarse grid operator is given by Galerkin procedure

.= RAP,R = P!

R = P1 comes from variational considerations.
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Algebraic smoothness

Which error components should be represented on the coarse
grid(s) and accurately interpolated from it 7
The ones that are not reduced by relaxation on the fine grid.

Such error components are called algebraically smooth (vs phys-
ically smooth), and they satisfy

Ae~ 0
BTW

a;,€4 ~ — Z aijej
i7]
gives a hint to interpolation...
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Desired properties

o T he goal of the coarse grid is to accurately resolve the smooth
components.

¢ T he goal of the prolongation operator is to accurately transfer
them back to the fine grid.
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Strong dependence and strong influence
Variable u; strongly depends on variable (o it

—a;j > 0 r]p?g;{—aik}, 0<6<1

The variable u; is then said to strongly influence u;.

Makes sense if the u; is strongly influenced by (o then it can be
approximated using u;.
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Interpolation

Consider all fine grid points {1,2,...,n} =FUC

2
Z|zg|(z 23) <1, 1<i<n
gAY G

If C-point j strongly influences an F-point ¢ then ¢; = e;.

The error is smooth in the direction of strong connections and
can be represented by the coarse grid.
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Coarse grid variables
Consider a set of the fine grid variables F = {1,..., N}.

The set of coarse grid points C C F should satisfy:

e For each point i € F, every point j € S;, (a;; # 0), that
strongly influences ¢ should be either in C' or should strongly de-
pend on at least one point in C.

e T he set of C points should be a maximal subset of all points
with the property that no C-point strongly depends on another
C point
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Interpolation

e; 1€ C
Pe); = v .
( )7’ { szC@' Wij€j, 1 cF

The coefficients come from the error equation:

a;,€4 ~ — Z az-jej
17

wij = (a5 + D Aaimaim/ Y amp})/(aii+ D ain)

mEDZ'-S keC; nED;-“U

40



More of AMG

Works nicely for PDE problems with structured grids: benefits
from using smart prolongation operators that accommodate al-
gebraically smooth error components (near null space).

This is important when the near null space is physically oscilla-
tory.
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Problem in question

—Au(z) + V(2)u(z) = (), reQC R NEN

Both V(z) and u(x) are periodic in .

What we want:

Find all A € A and all associated eigenfunctions using MEB (Mul-
tiscale EigenBasis Structure)

More concerned with A — V(z) > 0.
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Motivation for MEB

e MEB: Very limited description on the finest grid AND accu-
rate and full description of all eigenfunctions on the coarsest

grid.

e [ he cost of just storing all eigenfunctions on the finest grid
is O(N?).

e We want everything (calculation, storing, applications) in
O(N log N) operations.

MEB was introduced by Livne and Brandt for solving 1d Schrodinger;
employed monodromies.
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Strategy

On each grid we need operators (including prolongation) that
will describe all eigenfunctions (their representatives)!

If a regular multigrid structure is used this does not happen for
the following reasons:
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Discrete Operators

e Only PDE operator equally well describes all eigenfunctions;

e FOor a given discretization scale, any discrete PDE and any
prolongation works well (if at all) only for a limited range of
eigenfunctions;

e As the scale increases this range shrinks.
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Moreover..

e System with N unknowns can have at most N eigenfunctions

e On the next scale (N/2% unknowns) — at most N/2% eigen-
functions..

Possible strategy: On scale with N/Qd unknowns use 24 systems
of size N/2%, or 29=1 systems of size 2N/2¢, or etc.
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MEB

-y

Size 1 problem
Nx1 |
AN
1 problem another problem
N/2 X 2 l I
N2 N 12
4 problems
N/Ax4 | | w I\\\\\r\\
Nla Alg A4 A



SOLVE : ALty

. :

A
FIND A? usng A' and ul
. 2 32 2 22 22
SOLVE : AZLH A2 U AU =N 4
| \l/z A | \l/z
}\1 )\2

3 : 2 2
FIND Aj using A©and ug et
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Exact Interpolation Scheme

P accurately interpolates #¢ = !

scale, £+ 1. For any uft1
Pyl — o, b+l

and its vicinity on the next

where [ = I /41 IS a polynomial interpolation.

Reasoning:

o il is represented by a constant on scale ¢+ 1 and perfectly
interpolated from there;

o if it = utul for smooth u? then @t ~ PufT1 since smooth ¢
IufT1. As a result 4 has a smooth representative vft1 = u2
and accurate prolongation.
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Local Basis

Define, for each subinterval of A and each scale ¢, a local basis
{ay,...,a%} as follows:

e Each 4 satisfies A‘af ~ \{M‘al

e For any @' such that A%af = X4, A\~ N\ @8 = S alul

o {uf,..., %} is locally orthogonal (i.e., P¥P; ~ 0).
Knowing {a{,...,aK}, (Pq,...,Pg) allows an accurate descrip-
tion of @* by the weight functions{uf,..., u%}.
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New Coarse Operators (Galerkin)

AL 4T oy 0L,

where

+1 ¢ +1 /¢
and
/41 /41
41 _ [u1+ u}?— ]t

U .

This is where orthogonality of the local basis is important —
leads to a block-diagonal system

Next step: Find a new local basis... etc
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SOLVE: Local V-cycles

On scale ¢, ol problems are to be solved. Each is

Alut = amtt

for a fixed A\.
Good solver: regular AMG (Galerkin) V(0, %) cycle with linear I.

No relaxation on the way to the coarsest scale because looking
for the smoothest possible weight functions wu.
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Local Basis Again (1D)

Consider
Au = A\gMu

Find two (in 1D) approximate solutions (different and " orthog-
onal”) Ui, U?.

Locally good approximations areu; o = exp(£ip(x)),
d(¢(x)) = \/max{0, Ao — V(x)

We need this to discuss our choice of restriction operator R
(normally,R = P*).
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Differential weight operators

For V(x) — \g < O:
(L — Xo)(u(x)e?) = (—u" — 2ip/u — i@ w)e'?
and For V(z) — A\g > O:

—u" 4+ (V — Xo)u
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Discretization stensils

V(i) - A<kO0

- 1 J

otherwise

1

- 1 J
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Restriction R

V(z) = MTl<cc0o && V(z)=-X<0

R is chosen to approximate the EIS P* but with possibly
different constant coefficients.
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Restriction R

V(i) = MTl>0 && V(z)=X>0

R is chosen to approximate the EIS P* but with possibly
different constant coefficients.
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MEB in Action

LT EaVAVE I g

i

V(x) = —100. The eigenfunction is associated with A = 69. The
snapshots are made on the increasingly coarser scales. The final
one is the reconstructed (on the finest scale) actual eigenfunc-

tion.
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Numerical Experiments

M 1 -36.0 -19.0 0.0 21.0 440

6 -36.163015 | -19.013837 | 0.11142759 21.050244 | 44.148021
7 -35.922581 | -18.978212 | 0.026406604 21.001174 | 43.944225
8 -35.085884 | -18.989143 | 0.014880117 21.003859 | 43.987206
¢) —35.994773 | -18.995245 | 0.005703412 20.998649 | 43.996893
10 | -35.998341 | -18.997613 | 0.0025906716 20.999942 | 43.998535
11 | -35.999262 | -19.000032 | 0.00070075148 | 21.000313 | 44.000205
12 | -35.999572 | -18.999879 | -0.00024166004 | 21.000453 | 43.999858

Weight PDEs, p =4, V = —100

M T -36.0 -19.0 0.0 21.0 440

6 -36.826235 | -20.305766 | 1.1049825 18.091001 | 39.905914
7 -36.189308 | -19.318236 | -0.48227638 20.276804 | 42.966252
8 -36.052675 | -19.073732 | -0.1101791 20.822695 | 43.744047
9 -36.011517 | -19.016339 | -0.02391381 20.953409 | 43.93638
10 | -36.002533 | -19.002871 | -0.0062959449 | 20.988634 | 43.983389
11 | -36.000309 | -19.001344 | -0.0018867208 | 20.997487 | 43.996415
12 | -35.999834 | -19.000207 | -0.0007297946 | 20.999747 | 43.998911

Schrodinger PDE, p=4, V = —100
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M | -36.0 -19.0 0.0 21.0 440

6 -36.163015 | -19.013837 | 0.11142759 21.050244 | 44.148021
7 -35.922581 | -18.973212 | 0.026406604 21.001174 | 43.944225
8 -35.085884 | -18.989143 | 0.014880117 21.003859 | 43.987206
9 ~35.994773 | -18.995245 | 0.005703412 20.998649 | 43.996393
10 | -35.998341 | -18.997613 | 0.0025906716 20.999942 | 43.998535
11 | -35.999262 | -19.000032 | 0.00070075148 | 21.000313 | 44.000205
12 | -35.999572 | -18.999879 | -0.00024166004 | 21.000453 | 43.999858

Weight PDEs, p =4, V = —100

M T-36.0 -19.0 0.0 21.0 440

6 ~36.80291 -19.043965 | 1.0138234 21.065505 | 44.642709
7 -36.191769 | -19.005795 | 0.26487493 21.022192 | 44.1662

38 ~36.044376 | -18.999708 | -0.055182284 21.006638 | 44.040704
9 ~36.010185 | -18.999317 | -0.011737716 21.001595 | 44.010552
10 | -36.002994 | -18.999711 | -0.0030461405 21.00036 44003102
11 | -36.000712 | -18.999867 | -0.00099222517 | 21.00013 44000855
12 | -36.000029 | -18.999924 | -0.00021906591 | 21.000133 | 44.000216

Weight PDEs, p =2, V = —100
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M | -48.363146 | -33.930701 | -17.461388 | 1.2359528 | 21.9687031 | 44.819641
7 -48.407263 | -34.035775 | -17.483754 | 1.2825186 | 22.165257 | 44.940064
8 -48.171214 | -33.975234 | -17.310086 | 1.0639833 | 21.87618 44.724361
9 -48.042596 | -33.910144 | -17.319428 | 0.9688164 | 21.615584 | 44.821105
10 | -48.284795 | -33.917122 | -17.421561 | 1.2828984 | 22.028707 | 44.819156
11 | -48.16908 -33.912838 | -17.405412 | 1.2366406 | 22.11619 44.819709
12 | -48.206817 | -33.900991 | -17.468307 | 1.1645153 | 22.132768 | 44.818492
Weight PDEs, p =4, V(x) = —100 + 30cos(5x).

M | -48.363146 | -33.930701 | -17.461388 | 1.2359528 21.987031 | 44.819641
7 -48.698139 | -34.265817 | -17.793359 | 0.70434873 | 21.25357 43.782616
8 -48.298226 | -34.032278 | -17.543688 | 1.0896674 21.80743 44 557441
9 -48.150837 | -33.980731 | -17.481617 | 1.1861352 21.943762 | 44.756828
10 | -48.083451 | -33.958645 | -17.461294 | 1.2085395 21.976488 | 44.803775
11 | -48.055789 | -33.954236 | -17.454826 | 1.2131808 21.984521 | 44.81683

12 | -48.023985 | -33.950807 | -17.452403 | 1.2144852 21.9687305 | 44.819376

Schrodinger PDE, p =4, V(z) = —100 4 30 cos(5x).
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M | -48.363146 | -33.930701 | -17.461388 | 1.2359528 | 21.987031 | 44.819641
7 | -48.698139 | -34.265817 | -17.793359 | 0.70434873 | 21.25357 | 43.782616
8 | -48.298226 | -34.032278 | -17.543688 | 1.0896674 | 21.80743 | 44.557441
9 | -48.150837 | -33.980731 | -17.481617 | 1.1861352 | 21.943762 | 44.756828
10 | -48.083451 | -33.958645 | -17.461294 | 1.2085395 | 21.976488 | 44.803775
11 | -48.055789 | -33.954236 | -17.454826 | 1.2131808 | 21.984521 | 44.81683

12 | -48.023985 | -33.950807 | -17.452403 | 1.2144852 | 21.987305 | 44.819376

Schrodinger PDE, p =4, V(z) = —100 4 30 cos(5x).

M | -48.363146 | -33.930701 | -17.461388 | 1.2359528 | 21.987031 | 44.819641
7 | -49.261933 | -34.396099 | -17.827294 | 0.47309162 | 21.257366 | 43.840523
8 | -48.609076 | -34.086605 | -17.554719 | 1.0312624 | 21.808048 | 44.574333
9 | -48.280272 | -33.996475 | -17.483958 | 1.1684235 | 21.942334 | 44.759816
10 | -48.115929 | -33.964581 | -17.466092 | 1.2023517 21.976503 | 44.805739
11 | -47.992249 | -33.947184 | -17.460468 | 1.2115868 | 21.985157 | 44.817029
12 | -47.887103 | -33.932205 | -17.458074 | 1.2143396 | 21.987333 | 44.319889

Schrodinger PDE, p =2, V() = —100 4+ 30 cos(5x)
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Current Developments: 2D and more (with Achi Brandt)

2D local basis is tricky: involves many directions and eigen-
functions travel between them;

Just doubling the number of eigenintervals does not help:
N/4 x 2 #= N, need to increase the size of local basis;

Focus: Robust procedure of finding exhausting sets of pro-
longation operators that accommodate all fine scale eigen-
functions and use them to build coarse scale operators;

An extra benefit — a smarter (adaptive) division of eigenin-
tervals.
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e T his approach is not limited to the Schrodinger equation.



