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Presentation Plan

• Iterative methods: convergence and smoothing rates;

• Motivation to use many grids

• Geometric Multigrid method

• Main components

• V-cycle

• CS scheme vs FAS scheme, FMG

• Algebraic Multigrid method

• Application to eigen problems
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Problem in question

Lu(x) = f(x), x ∈ Ω ⊂ Rd

plus some boundary conditions on ∂Ω.

Discretized problem (on a regular grid with mesh-size h):

Lhuh = fh

plus b.c.

For now assume that L is a linear operator and Lh ≡ A is simply

a matrix.
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Iterative solvers: relaxation

Goal is to solve: Au = f

Current approximation : un

Residual: rn = f −Aun

Error: en = u− un

Residual equation: Aen = rn

Examples of relaxation schemes: Jacobi, Gauss-Seidel, line re-

laxation, distributive relaxation (i.e., Kaczmarz).
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Different error types: Before Relaxation
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Different error types: After Relaxation

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

POST RELAXATION ERROR

7



Error Fourier Analysis

Consider

Lu = a
∂2u

∂x2
+ b

∂2u

∂y2
= f

Then in the discrete form:

a
uj−1,k + uj+1,k − 2uj,k

h2
+ b

uj,k−1 + uj,k+1 − 2uj,k

h2
= fj,k

Solving using the lexicographical Gauss-Seidel relaxation:

a
un+1

j−1,k + un
j+1,k − 2un+1

j,k

h2
+ b

un+1
j,k−1 + un

j,k+1 − 2un+1
j,k

h2
= fj,k
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Error Fourier Analysis

For the errors en and en+1, true

a
en+1
j−1,k + en

j+1,k − 2en+1
j,k

h2
+ b

en+1
j,k−1 + en

j,k+1 − 2en+1
j,k

h2
= 0.

Consider each error in the Fourier form:

en =
∑

Cn
θ ei(θ1j+θ2k), en+1 =

∑
Cn+1

θ ei(θ1j+θ2k),

where θ = (θ1, θ2), and |θ1|, |θ2| < π.

(Remark: for ei(ω1x+ω2y), θj = ωjh)
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Amplification factor

Amplification parameter (the rate of change in amplitude):

µ(θ) =
|Cn+1

θ |
|Cn

θ |
=

|aeiθ1 + beiθ2|
|2a + 2b− ae−iθ1 − be−iθ2|

For which (θ1, θ2), µ is small ?

If a = b, for instance, for π/2 ≤ |θ| ≤ π true that µ ≤ .5

Meanwhile µ(θ)→ 1 as (θ1, θ2)→ (0,0).
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Does not always work...

For instance, if a� b, for GS µ(π/2,0)→ 1 as a→ 0.

Use line relaxation instead:

µ(θ) =
|a|

|2(a + b− b cos θ2)− ae−iθ1|

And then for π/2 ≤ |θ| ≤ π again µ ≤ max{5−1/2, a
a+2b}
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Summary for the Laplace operator

• Important reduction: π/2 ≤ |θ| ≤ π. These components cannot
be approximated on the coarse grid (2h).
Introducing smoothing factor µ:

µ = min
π/2≤ |θ| ≤π

µ(θ)

• Slow(er) convergence 0 ≤ |θ| ≤ π/2. These components can
be represented on the coarser grid. For instance, there

[π/4, π/2]→ [π/2, π]

i.e., will be reduced by µ

From now on, the role of relaxation is to ”smooth”, i.e., reduce
error components that cannot be approximated and reduced on
the coarser grid(s).
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Multigrid Methods

Instead of annihilating error at grid h just smooth it (inexpen-
sively) and then let the coarse grid(s) do the rest.

Every Fourier error component is oscillatory on some grid H and
can be reduced there efficiently

OR

it is so smooth that can be represented on the coarsest grid with
few unknowns where direct solver is OK.

This is of course with proper communication between grids.
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Prolongation Operator

Typical P : polynomial interpolation, i.e., linear or cubic.

P = (1/2 1 1/2)

h

2h
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Restriction Operator

Typical R : full weighting.

R = (1/4 1/2 1/4)

h

2h
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Injection Operator

Injection J:

2h

h
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Two grid cycle

Correction Scheme (Brandt, 1971)

On the fine grid, h:

Relax ν1 times Lhuh = fh

Calculate residual: rh = fh − Lhuh

Restrict residual to the next grid r2h = Rrh

On the coarse grid, 2h:

Solve L2he2h = r2h

Prolongate correction to the fine grid: uh ← uh + Pe2h

On the fine grid , h:

Relax ν2 times Lhuh = fh
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CS vs FAS
Full Approximation Scheme (1975)

CS works only for linear L:

Lh(uh + eh) = Lhuh + Lheh

If L is not linear then instead of a correction, the entire solution
should be represented on each grid with the residual equation
being

Lh(uh + eh)− Lhuh = rh.

Warning: The coarse grid treatment should not affect part of
the solution that is not represented there.
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τ Correction

To guarantee the accuracy of the coarse-grid operators instead

of solving

L2hu2h = f2h = Rfh

add τ correction to the right-hand-side:

L2hu2h = f2h + τ2h
h

where

τ2h
h = L2h(Juh)−R(Lhuh)

τ is called fine-to-coarse defect correction.
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Multigrid V-cycle V (ν1, ν2)
Full Approximation Scheme Scheme

From the finest to the coarsest grid
for m = M, . . . ,2

Relax ν1 times Lmum = fm

Initial coarse grid approximation: um−1 = Jum

Restrict residual fm−1 = R(fm − Lmum) + Lm−1um−1

end for

Coarsest grid m = 1
Solve Lmum = fm

From the coarsest to the finest grid
for m = 2, . . . M

Coarse grid correction um = um + P (um−1 − Jum)
Relax ν2 times Lmum = fm

end for
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Work

Work per cycle is is O(n) for both CS and FAS

n is the size of the finest grid.
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Full Multigrid (FMG)
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FMG

Brandt (1981)

• Each sub-cycle solves the problem upto the truncation error

and then accurately interpolates solution approximation (very

good quality) to the new finest grid.

• Truncation error there is only four times smaller, one V-cycle

easily makes such reduction.

• After the FMG is done, the approximate solution is accurate

upto the truncation error on the finest grid.
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Differential eigenvalue problems and FMG
Brandt, McCormick, Ruge (1983)

Hackbush (1980)

Approach:

• Treat Ax = λx as a nonlinear problem (FAS)

• Heavily use smoothness of eigenvalues and global nature of λ:
a lot of good comes from very coarse grids (FMG).

• Work: O(n) for the first eigenvalue
O(q2n + q3 logn) for q > 1 eigenvalues. The increase is due to
orthogonalization and Ritz projection.
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More on convergence: Relation of convergence rate with

eigenvalues of A

Assume {u1, . . . , un} are eigenfunctions ofA with eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λn = λmax

Consider error ek =
∑

ek
i ui (the residual is then rk =

∑
λie

k
i ui).

Thus, the after one relaxation sweep,

ek+1
i ← (1−O(|λi|/|λmax|)ek

i
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Remark on the side: Helmholtz operator

Brandt, Livshits (1997)

Lu = ∆u + k2u = f(x)

Null space: exp(i(k1x + k2y)), k2
1 + k2

2 = k2

Slow to converge error components Le ≈ 0:

exp(i(ω1x + ω2y)), ω2
1 + ω2

2 ≈ k2

They are not smooth anymore: Cannot send them to the

coarsest grids and deal with them there just yet!
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Phase space

k

Basic functions: u` = exp(i(k`
1x + k`

2y))
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Separation

Unreduced error:

e(x) =
∑
`

e`(x)u`(x)

Residual:

r(x) =
∑
`

r`(x)u`(x)

Instead of finding oscillatory e(x) approximate smooth weights

e`(x)
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Helmholtz operator: finding e`(x)

Substitute the error:

Le(x) =
∑
`

u`L`e
` =

∑
`

u`r`

Separate:r(x) into r` and solve separately

L`e` = r`

and then reconstruct back

e =
∑
`

e`

.

31



Algebraic Multigrid (AMG)

Brandt, McCormick, Ruge (1984)

Ruge, Stüben (1987)

Consider a system of linear equations:

Ax = b

Assume here that A is an M-matrix: symmetric, positive definite,

aii > 0, aij < 0, i 6= j.
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Coarse grid operator

1. Geometric MG (for PDEs) : all operators approximate the

PDE.

2. Algebraic MG: each next coarse operator approximates the

previous fine one

(a) unstructured grids;

(b) no PDE at all: matrices

(c) discontinuous coefficients
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AMG components

Coarse grid operator is no more a mere discretization of PDE!

• Coarse grid variables

• Prolongation operator: P , from coarse to fine, replaces fine

grid values with the coarse grid values;

• Restriction operator: R, from fine to coarse, averages fine grid

equations;

• Coarse grid operator Ac (fine grid operator A is given)

Coarse grid operator is given by Galerkin procedure

Ac = RAP, R = P t

R = PT comes from variational considerations.
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Algebraic smoothness

Which error components should be represented on the coarse

grid(s) and accurately interpolated from it ?

The ones that are not reduced by relaxation on the fine grid.

Such error components are called algebraically smooth (vs phys-

ically smooth), and they satisfy

Ae ≈ 0

BTW

aiiei ≈ −
∑
i6=j

aijej

gives a hint to interpolation...
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Desired properties

�The goal of the coarse grid is to accurately resolve the smooth

components.

� The goal of the prolongation operator is to accurately transfer

them back to the fine grid.
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Strong dependence and strong influence

Variable ui strongly depends on variable uj if

−aij ≥ θ max
k 6=i
{−aik}, 0 < θ ≤ 1

The variable uj is then said to strongly influence ui.

Makes sense if the ui is strongly influenced by uj then it can be

approximated using uj.

37



Interpolation

Consider all fine grid points {1,2, . . . , n} = F
⋃

C

∑
j 6=i

|aij|
aii

(ei − ej)
2

e2i
� 1, 1 ≤ i ≤ n

If C-point j strongly influences an F-point i then ei ≈ ej.

The error is smooth in the direction of strong connections and

can be represented by the coarse grid.
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Coarse grid variables

Consider a set of the fine grid variables F = {1, . . . , N}.

The set of coarse grid points C ⊂ F should satisfy:

• For each point i ∈ F, every point j ∈ Si, (aij 6= 0), that

strongly influences i should be either in C or should strongly de-

pend on at least one point in C.

• The set of C points should be a maximal subset of all points

with the property that no C-point strongly depends on another

C point
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Interpolation

(Pe)i =

{
ei, i ∈ C∑

j∈Ci
ωijej, i ∈ F

The coefficients come from the error equation:

aiiei ≈ −
∑
i6=j

aijej

ωij = (aij +
∑

m∈Ds
i

{aimajm/
∑

k∈Ci

amk})/(aii +
∑

n∈Dw
i

ain)
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More of AMG

Works nicely for PDE problems with structured grids: benefits

from using smart prolongation operators that accommodate al-

gebraically smooth error components (near null space).

This is important when the near null space is physically oscilla-

tory.
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Problem in question

−∆u(x) + V (x)u(x) = λu(x), x ∈ Ω ⊂ Rd, λ ∈ Λ

Both V (x) and u(x) are periodic in Ω.

What we want:

Find all λ ∈ Λ and all associated eigenfunctions using MEB (Mul-

tiscale EigenBasis Structure)

More concerned with λ− V (x)� 0.
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Motivation for MEB

• MEB: Very limited description on the finest grid AND accu-
rate and full description of all eigenfunctions on the coarsest
grid.

• The cost of just storing all eigenfunctions on the finest grid
is O(N2).

• We want everything (calculation, storing, applications) in
O(N logN) operations.

MEB was introduced by Livne and Brandt for solving 1d Schrödinger;
employed monodromies.
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Strategy

On each grid we need operators (including prolongation) that

will describe all eigenfunctions (their representatives)!

If a regular multigrid structure is used this does not happen for

the following reasons:
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Discrete Operators

• Only PDE operator equally well describes all eigenfunctions;

• For a given discretization scale, any discrete PDE and any

prolongation works well (if at all) only for a limited range of

eigenfunctions;

• As the scale increases this range shrinks.
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Moreover..

• System with N unknowns can have at most N eigenfunctions

• On the next scale (N/2d unknowns) – at most N/2d eigen-

functions..

• . . .

Possible strategy: On scale with N/2d unknowns use 2d systems

of size N/2d, or 2d−1 systems of size 2N/2d, or etc.
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Λ Λ
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Size
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etc

λ

λ

1 1 1

A  u   =     u λ A  u   =     u λ

λ

λ λ2
1 2

2

2 2 2 2

2 2 2
2222

11 1 1

SOLVE : 

A  A 2 using A 1 and u  1FIND 

FIND A 1
3

1

SOLVE : 

A  u   =     u 

using A 2 and u  2
1
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Exact Interpolation Scheme

P accurately interpolates û` ≡ u1 and its vicinity on the next
scale, ` + 1. For any u`+1

Pu`+1 = û`Iu`+1

where I ≡ I`
`+1 is a polynomial interpolation.

Reasoning:

• û` is represented by a constant on scale ` + 1 and perfectly
interpolated from there;

• if ũ` = û`u` for smooth u` then ũ` ≈ Pu`+1 since smooth u` ≈
Iu`+1. As a result ũ` has a smooth representative u`+1 ≡ u2

and accurate prolongation.
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Local Basis

Define, for each subinterval of Λ and each scale `, a local basis

{û`
1, . . . , û`

K} as follows:

• Each û`
k satisfies A`û`

k ≈ λ`
0M`û`

k

• For any ũ` such that A`ũ` = λ`ũ`, λ` ≈ λ`
0: ũ` =

∑
û`

ku`
k

• {û`
1, . . . , û`

K} is locally orthogonal (i.e., P ∗i Pj ≈ 0).

Knowing {û`
1, . . . , û`

K}, (P1, . . . , PK) allows an accurate descrip-

tion of ũ` by the weight functions{u`
1, . . . , u`

K}.
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New Coarse Operators (Galerkin)

A`+1u`+1 = λM`+1u`+1

where

A`+1
ij = RiA

`Pj, M`+1
ij = RiM

`Pj

and

u`+1 = [u`+1
1 , . . . u`+1

K ]t

This is where orthogonality of the local basis is important –

leads to a block-diagonal system

Next step: Find a new local basis... etc
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SOLVE: Local V-cycles

On scale `, 2` problems are to be solved. Each is

A`u` = λM`u`

for a fixed λ.

Good solver: regular AMG (Galerkin) V (0, ∗) cycle with linear I.

No relaxation on the way to the coarsest scale because looking

for the smoothest possible weight functions u.
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Local Basis Again (1D)

Consider

Au = λ0Mu

Find two (in 1D) approximate solutions (different and ”orthog-

onal”) u1, u2.

Locally good approximations areu1,2 ≈ exp(±iϕ(x)),

d(ϕ(x)) =
√

max{0, λ0 − V (x)

We need this to discuss our choice of restriction operator R

(normally,R = P ∗).
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Differential weight operators

For V (x)− λ0 < 0:

(L− λ0)(u(x)eiϕ) = (−u”− 2iϕ′u′ − iϕ”u)eiϕ

and For V (x)− λ0 ≥ 0:

−u” + (V − λ0)u

54



Discretization stensils

V (x)− λ� 0

otherwise
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Restriction R

V (x)− λ`+1 << 0 && V (x)− λ` < 0

R : (1/2, 1/2)

R is chosen to approximate the EIS P ∗ but with possibly

different constant coefficients.
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Restriction R

V (x)− λ`+1 ≥ 0 && V (x)− λ` ≥ 0

R : (1/4, 1/2, 1/4)

R is chosen to approximate the EIS P ∗ but with possibly

different constant coefficients.
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MEB in Action
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V (x) = −100. The eigenfunction is associated with λ = 69. The
snapshots are made on the increasingly coarser scales. The final
one is the reconstructed (on the finest scale) actual eigenfunc-
tion.
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Numerical Experiments

M -36.0 -19.0 0.0 21.0 44.0
6 -36.163015 -19.013837 0.11142759 21.050244 44.148021
7 -35.922581 -18.978212 0.026406604 21.001174 43.944225
8 -35.985884 -18.989143 0.014880117 21.003859 43.987206
9 -35.994773 -18.995245 0.005703412 20.998649 43.996893
10 -35.998341 -18.997613 0.0025906716 20.999942 43.998535
11 -35.999262 -19.000032 0.00070075148 21.000313 44.000205
12 -35.999572 -18.999879 -0.00024166004 21.000453 43.999858

Weight PDEs, p = 4, V = −100

M -36.0 -19.0 0.0 21.0 44.0
6 -36.826235 -20.305766 1.1049825 18.091001 39.905914
7 -36.189308 -19.318236 -0.48227638 20.276804 42.966252
8 -36.052675 -19.073732 -0.1101791 20.822695 43.744047
9 -36.011517 -19.016339 -0.02391381 20.953409 43.93638
10 -36.002533 -19.002871 -0.0062959449 20.988634 43.983389
11 -36.000309 -19.001344 -0.0018867208 20.997487 43.996415
12 -35.999834 -19.000207 -0.0007297946 20.999747 43.998911

Schrödinger PDE, p = 4, V = −100
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M -36.0 -19.0 0.0 21.0 44.0
6 -36.163015 -19.013837 0.11142759 21.050244 44.148021
7 -35.922581 -18.978212 0.026406604 21.001174 43.944225
8 -35.985884 -18.989143 0.014880117 21.003859 43.987206
9 -35.994773 -18.995245 0.005703412 20.998649 43.996893
10 -35.998341 -18.997613 0.0025906716 20.999942 43.998535
11 -35.999262 -19.000032 0.00070075148 21.000313 44.000205
12 -35.999572 -18.999879 -0.00024166004 21.000453 43.999858

Weight PDEs, p = 4, V = −100

M -36.0 -19.0 0.0 21.0 44.0
6 -36.80291 -19.043965 1.0138234 21.065505 44.642709
7 -36.191769 -19.005795 0.26487493 21.022192 44.1662
8 -36.044376 -18.999708 -0.055182284 21.006638 44.040704
9 -36.010185 -18.999317 -0.011737716 21.001595 44.010552
10 -36.002994 -18.999711 -0.0030461405 21.00036 44.003102
11 -36.000712 -18.999867 -0.00099222517 21.00013 44.000855
12 -36.000029 -18.999924 -0.00021906591 21.000133 44.000216

Weight PDEs, p = 2, V = −100
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M -48.363146 -33.930701 -17.461388 1.2359528 21.987031 44.819641
7 -48.407263 -34.035775 -17.483754 1.2825186 22.165257 44.940064
8 -48.171214 -33.975234 -17.310086 1.0639833 21.87618 44.724361
9 -48.042596 -33.910144 -17.319428 0.9688164 21.615584 44.821105
10 -48.284795 -33.917122 -17.421561 1.2828984 22.028707 44.819156
11 -48.16908 -33.912838 -17.405412 1.2366406 22.11619 44.819709
12 -48.206817 -33.900991 -17.468307 1.1645153 22.132768 44.818492

Weight PDEs, p = 4, V (x) = −100 + 30cos(5x).

M -48.363146 -33.930701 -17.461388 1.2359528 21.987031 44.819641
7 -48.698139 -34.265817 -17.793359 0.70434873 21.25357 43.782616
8 -48.298226 -34.032278 -17.543688 1.0896674 21.80743 44.557441
9 -48.150837 -33.980731 -17.481617 1.1861352 21.943762 44.756828
10 -48.083451 -33.958645 -17.461294 1.2085395 21.976488 44.803775
11 -48.055789 -33.954236 -17.454826 1.2131808 21.984521 44.81683
12 -48.023985 -33.950807 -17.452403 1.2144852 21.987305 44.819376

Schrödinger PDE, p = 4, V (x) = −100 + 30cos(5x).
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M -48.363146 -33.930701 -17.461388 1.2359528 21.987031 44.819641
7 -48.698139 -34.265817 -17.793359 0.70434873 21.25357 43.782616
8 -48.298226 -34.032278 -17.543688 1.0896674 21.80743 44.557441
9 -48.150837 -33.980731 -17.481617 1.1861352 21.943762 44.756828
10 -48.083451 -33.958645 -17.461294 1.2085395 21.976488 44.803775
11 -48.055789 -33.954236 -17.454826 1.2131808 21.984521 44.81683
12 -48.023985 -33.950807 -17.452403 1.2144852 21.987305 44.819376

Schrödinger PDE, p = 4, V (x) = −100 + 30cos(5x).

M -48.363146 -33.930701 -17.461388 1.2359528 21.987031 44.819641
7 -49.261933 -34.396099 -17.827294 0.47309162 21.257366 43.840523
8 -48.609076 -34.086605 -17.554719 1.0312624 21.808048 44.574333
9 -48.280272 -33.996475 -17.483958 1.1684235 21.942334 44.759816
10 -48.115929 -33.964581 -17.466092 1.2023517 21.976503 44.805739
11 -47.992249 -33.947184 -17.460468 1.2115868 21.985157 44.817029
12 -47.887103 -33.932205 -17.458074 1.2143396 21.987333 44.819889

Schrödinger PDE, p = 2, V (x) = −100 + 30cos(5x)
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Current Developments: 2D and more (with Achi Brandt)

• 2D local basis is tricky: involves many directions and eigen-
functions travel between them;

• Just doubling the number of eigenintervals does not help:
N/4× 2 6= N , need to increase the size of local basis;

• Focus: Robust procedure of finding exhausting sets of pro-
longation operators that accommodate all fine scale eigen-
functions and use them to build coarse scale operators;

• An extra benefit – a smarter (adaptive) division of eigenin-
tervals.
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• This approach is not limited to the Schrödinger equation.


