Trace estimation of matrix inverses

James C. Osborn BU

QCDNA
Yale
May 3, 2007

Trace estimation of matrix inverses

- physics motivation
- summary of current methods
- stochastic sources
- pseudofermion
- dilution
- subtraction
- application of multigrid

Physics motivation

- chiral condensate

$$
\begin{gathered}
\frac{1}{V}\left\langle\sum_{\alpha} \bar{\psi}_{\alpha} \psi_{\alpha}\right\rangle=\frac{1}{V Z} \int d U d \bar{\psi} d \psi\left(\sum_{\alpha} \bar{\psi}_{\alpha} \psi_{\alpha}\right) \mathrm{e}^{-S_{g}(U)-\bar{\psi} D(U) \psi} \\
=\frac{-1}{V Z} \int d U\left|\operatorname{Tr} \frac{1}{D(U)}\right| \operatorname{det}[D(U)] \mathrm{e}^{-S_{g}(U)} \\
=-\frac{1}{V}\left\langle\operatorname{Tr} \frac{1}{D(U)}\right\rangle
\end{gathered}
$$

- usually very large so easy to calculate

Disconnected diagrams

- quark diagrams: propagator

$$
x_{y}=\left\{D^{-1}\right\}_{y, x}
$$

- connected correlator

- disconnected correlator

Disconnected diagrams

- form factors

- need momentum states

$$
J\left(\vec{p}, t^{\prime}\right)=\sum_{\vec{x}} \mathrm{e}^{i \vec{p} \cdot \vec{x}} \operatorname{Tr}_{s c}\left[O_{z}\left\{D^{-1}\right\}_{z, z}\right]_{z=\left\{\vec{x}, t^{\prime}\right\}}
$$

Stochastic sources

- random source vectors

$$
\left\langle\left(\eta^{*}\right)_{\alpha}(\eta)_{\beta}\right\rangle_{\eta}=\delta_{\alpha, \beta}
$$

- trace estimate

$$
\operatorname{Tr} O D^{-1} \equiv \operatorname{Tr} A \approx \frac{1}{N} \sum_{i=1}^{N} \eta^{(i) *}\left\{A \eta^{(i)}\right\}
$$

- variance (Dong, Liu; Bernardson, et al.)

$$
\begin{gathered}
\left.\sigma^{2}=\left.\frac{N}{N-1}\left\langle\frac{1}{N} \sum_{i=1}^{N}\right| \eta^{(i) *}\left\{A \eta^{(i)}\right\}\right|^{2}-\left|\frac{1}{N} \sum_{i=1}^{N} \eta^{(i) *}\left\{A \eta^{(i)}\right\}\right|^{2}\right\rangle_{\eta} \\
\left.=\operatorname{Tr} A^{2}+\left(\left\langle\mid \eta_{\beta}\right\rangle^{4}\right\rangle_{\eta}-2\right) \sum_{\alpha}\left\{A_{\alpha, \alpha}\right\}^{2}
\end{gathered}
$$

Random source type

- Gaussian

$$
\begin{aligned}
& \left.\left.\langle | \eta_{\beta}\right|^{4}\right\rangle_{\eta}=2 \\
\sigma^{2} & =\operatorname{Tr} A^{2} \\
= & \operatorname{Tr} O D^{-1} O D^{-1}
\end{aligned}
$$

- $Z(N>2), U(1)$

$$
\begin{gathered}
\left\langle\mid \eta_{\beta}{ }^{4}\right\rangle_{\eta}=1 \\
\sigma^{2}=\sum_{\alpha \neq \beta} A_{\alpha, \beta} A_{\beta, \alpha}
\end{gathered}
$$

Pseudofermion

- using Gaussian source

$$
\begin{aligned}
\operatorname{Tr} O D^{-1} & =\left\langle\eta^{*} O D^{-1} \eta\right\rangle_{\eta} \\
& =(1 / Z) \int d^{2 \mathrm{~N}} \eta\left\{\eta^{*} O D^{-1} \eta\right\} \mathrm{e}^{-\eta^{*} \eta} \\
& =\left(1 / Z^{\prime}\right) \int d^{2 \mathrm{~N}} \phi\left\{\phi^{*} O \phi\right\} \mathrm{e}^{-\phi^{*} D \phi}
\end{aligned}
$$

- heat-bath update of Φ (Duncan, Eichten, Yoo)
- Iow modes of D cause long autocorrelations
- can be combined with low eigenvector projection

Dilution

- use separate sources for each group of matrix indices: color, spin, spatial (Wilcox; Foley, et al.)
- pure random error ~ 1/sqrt(N)
- "perfect" dilution ($\mathrm{N}_{\text {max }}=12 \mathrm{~V}$ sources) $\stackrel{\stackrel{\rightharpoonup}{\mathrm{g}}}{\mathrm{g}}$ error $=0$
- want to approach "perfect" dilution as quickly as possible

Dilution

- tests on $10^{3} x 32$ Wilson Dirac Matrix
- trace on single time slice (12,000 components)
- with/without color/spin dilution
- spatial dilution tests:
- none (dilution factor 1)
- even/odd (dilution factor 2)
- cubic diagonal [(0,0,0)(1,1,1)],[(0,0,1)(1,1,0)],... (dilution factor 4)
- inner 5^{3} dilution with outer dilution among inner blocks (dilution factors $125,250,500$)

Dilution

- compare dilution (spin,color,spatial) to exact trace
- all points at fixed amount of work
- exact trace: dilution factor $=12,000$
- spatial dilution generally helps
- need spin/color dilution for >1000 sources

Dilution

Subtraction

- unbiased subtraction

$$
\begin{gathered}
\operatorname{Tr}\left(\Gamma D^{-1}\right)=\left\langle\eta^{*} \Gamma\left(D^{-1}-S_{t r}\right) \eta\right\rangle_{\eta} \\
S_{t r}=S-\Gamma^{-1} \frac{1}{N_{\max }} \operatorname{Tr} \Gamma S
\end{gathered}
$$

- want to reduce variance (off diagonal elements) without changing trace

Subtraction

- hopping parameter expansion (Wilson)

$$
\begin{gathered}
D=(1-\kappa M) / 2 \kappa \\
S=2 \kappa\left(1+\kappa M+\kappa^{2} M^{2}+\ldots\right)
\end{gathered}
$$

- cheap
- works for small kappa
- eigenvalue projection

$$
S=P_{e v} D^{-1} P_{e v}
$$

- setup requires finding low eigenvectors
- works well especially for small masses

Multigrid application

James Brannick
Richard Brower
Mike Clark
James Osborn
Claudio Rebbi

in collaboration with D. Keyes \& TOPS
(see Brannick's talk)

Subtraction

- multigrid subtraction

$$
\begin{aligned}
& S=V-c y c l e=T_{f}+R_{f c} D_{c}^{-1} R_{c f} \\
& \operatorname{Tr} \Gamma D^{-1}=\left\langle\eta^{*} \Gamma\left(D^{-1}-S\right) \eta\right\rangle_{\eta}+\operatorname{Tr} \Gamma S \\
& \operatorname{Tr} \Gamma S=\operatorname{Tr} \Gamma T_{f}+\operatorname{Tr} \Gamma R_{f c} D_{c}^{-1} R_{c f} \\
&=\operatorname{Tr} \Gamma T_{f}+\operatorname{Tr} R_{c f} \Gamma R_{f c} D_{c}^{-1}
\end{aligned}
$$

- can afford setup costs

Multilevel subtraction

- (geometric) adaptive smooth aggregation
- 4d Wilson fermions, 8^{4} lattice, 4^{4} blocks

Γ	$\operatorname{Tr} \Gamma \mathrm{D}^{-1}$	$\operatorname{Tr} \Gamma\left(\mathrm{D}^{-1}-\mathrm{S}\right)$	$\operatorname{Tr} \Gamma \mathrm{S}$	var $\Gamma \mathrm{D}^{-1}$	var $\Gamma\left(\mathrm{D}^{-1}-\mathrm{S}\right)$	var $\Gamma \mathrm{S}$
1	1503	18	1485	1213	121	1187
γ_{5}	0.00684	0.00033	0.00651	1213	121	1187
subtracted variance reduced $\sim 10 x$						
variance shifted to coarse operator						

- 2d Schwinger, 32^{2} lattice, 4×4 blocks variance reduced $\sim 100 x$

Summary

- trace estimation appears in many areas of lattice QCD
- usually either very easy (condensate) or very hard (most other cases) and usually ignored
- need better methods

