

- Meson correlations on lattice and the spectral functions
- Maximum Entropy Method in lattice QCD
- Numerical results : charmonium spectral functions at zero and finite temperature
- Conclusions and Outlook

4th International Workshop on Numerical Analysis and Lattice QCD (QCDNA), May 1-3, 2007

Meson correlators and spectral functions

if
$$T = 0$$
 and $\sigma(\omega) = \sum_{n} A_n \delta(\omega - E_n)$ \longrightarrow $G(\tau) = A_0 e^{-E_0 \tau} + A_1 e^{-E_1 \tau} + ...$

fit the large distance behavior of the lattice correlation functions

This is not possible for T > 0, $\tau_{max} = 1/T$ and in the case of resonances, e.g. $R(\omega) = \frac{\sigma_{e^+e^- \to had}}{\sigma_{e^+e^- \to \mu^+}}$

$$R(\omega) = \frac{\sigma_{e^+e^- \to hadrons}}{\sigma_{e^+e^- \to \mu^+\mu^-}} = \sigma(\omega)/\omega^2$$

Reconstruction of the spectral functions : MEM

 $G(\tau,T) = \int_0^\infty d\omega \sigma(\omega,T) \cdot K(\omega,T)$ $\mathcal{O}(10)$ data and $\mathcal{O}(100)$ degrees of freedom to reconstruct Bayesian techniques: find $\sigma(\omega, T)$ which maximizes $P[\sigma|DH] \sim P[D|\sigma H] P[\sigma|H]$ (Bay data Prior knowledge (Bay (Bayes' theorem) $H: \sigma(\omega, T) > 0 \implies$ Maximum Entropy Method (MEM): $P[\sigma|H] = e^{\alpha S}$ Asakawa, Hatsuda, Nakahara, PRD 60 (99) 091503, Prog. Part. Nucl. Phys. 46 (01) 459 $P[\sigma|DH] = P[\sigma|D\alpha m] = \exp(-\frac{1}{2}\chi^2 + \alpha S)$

Likelihood function Shannon-Janes entropy:

$$S = \int_0^\infty d\omega [\sigma(\omega) - m(\omega) - \sigma(\omega) \ln \frac{\sigma(\omega)}{m(\omega)}]$$

 $m(\omega)$ - default model $m(\omega \gg \Lambda_{QCD}) = m_0 \omega^2$ -perturbation theory

Procedure for calculating the spectral functions

How to find numerically a global maximum in the parameters space of O(100) dimenisons for fixed α ?

$$\sigma(\omega) = m(\omega) \exp\left[\sum_{i=1}^{N} s_i u_i(\omega)\right], \quad N \le N_{\tau}/2$$

Find the basis $u_i(\omega)$ through SVD of $K = U\Sigma V$, $u_i(\omega_j) = U_{ji}$ Bryan, Europ. Biophys. J. 18 (1990) 165 or use $u_i(\omega) = K(\omega, \tau_i)$ Jakovác, P.P., Petrov, Velytsky, PRD 75 (2007) 014506

maximization of $P[\sigma|D\alpha m]$ reduces to minimization of

$$U = \frac{\alpha}{2} \sum_{i,j=1}^{N} s_i C_{ij} s_j + \sum_{l=0}^{N_{\omega}} \sigma(\omega_l) \Delta \omega - \sum_{i=1}^{N} \bar{G}(\tau_i) s_i$$

covariance matrix ensemble average

which can be done using Levenberg-Marquardt algorithm $\Rightarrow \hat{\sigma}_{\alpha}$

Procedure for calculating the spectral functions (cont'd)

How to deal with the α -dependence of the result ?

$$\sigma(\omega) = \int d\alpha \ \hat{\sigma}_{\alpha}(\omega) \ P[\alpha|Dm]$$

For good data $P[\sigma|D\alpha m]$ is sharply peak around $\sigma(\omega) = \hat{\sigma}_{\alpha}(\omega)$ and using Bayes' theorem

$$P[\alpha|Dm] \sim \int [d\sigma]P[D|\sigma\alpha m]P[\sigma|\alpha m]P[\alpha|m]$$

$$\sim P[\alpha|m] \int [d\sigma] \exp\left[-\frac{1}{2}\chi^{2} + \alpha S\right]$$

$$\sim P[\alpha|m] \exp\left[\frac{1}{2}\sum_{k}\frac{\alpha}{\alpha+\lambda_{k}} + \alpha S(\hat{\sigma}_{\alpha}) - \frac{1}{2}\chi^{2}(\hat{\sigma}_{\alpha})\right]$$

 λ_k are the eigenvalues of $\Lambda_{ll'} = \frac{1}{2} \sqrt{\sigma_l} \frac{\partial \chi^2}{\partial \sigma_l \partial \sigma_{l'}} \sqrt{\sigma_{l'}}|_{\sigma = \hat{\sigma}_{\alpha}}$ and common choices for $P[\alpha|m]$ are $P[\alpha|m] = const$ and $P[\alpha|m] = 1/\alpha$.

In practice $P[\alpha|Dm]$ is peaked at some α_{max} .

Charmonium spectral functions at T=0

Anisotropic lattices: $16^3 \times 64, \xi = 2 \ 16^3 \times 96, \xi = 4, \ 24^3 \times 160, \xi = 4$ $L_s = 1.35 - 1.54$ fm, #configs=500-930; Wilson gauge action and Fermilab heavy quark action

 $\mathsf{Pseudo-scalar}\ (\mathsf{PS}) \to \mathsf{S-states}$

Jakovác, P.P., Petrov, Velytsky, PRD 75 (2007) 014506

For $\omega > 5$ GeV the spectral function is sensitive to lattice cut-off; good agreement with 2-exponential fit for peak position and amplitude

Charmonium spectral functions at T=0 (cont'd)

PS, $16^3 \times 96$, $a_t^{-1} = 8.18$ GeV, $\xi = 4$

 $P[\alpha|Dm]$ has a well defined maximum at some α_{max} Bryan algorithm and the new algorithm give similar results, but the use of the former is limited $\tau_{max} = 24$. Charmonium spectral functions at T=0 (cont'd)

What states can be resolved and what is the dependence on the default model ?

Reconstruction of an input spectral function :

Lattice data in PS channel for:

 $a_t^{-1} = 14.12 \text{GeV}, N_t = 160$

Ground states is well resolved, no default model dependence;

Excited states are not resolved individually, moderate dependence on the default model; Strong default model dependence in the continuum region, $\omega > 5$ GeV

Comparison of MEM and 2-exponential fit

Meson masses , $\beta = 6.5, \ \xi = 4,24^3 \times 160$:

MEM2-exp fit
$$m_{ps}(n = 1)$$
0.2147(7)0.2154(2) $m_{ps}(n = 2)$ 0.281(8)0.285(2) $m_{sc}(n = 1)$ 0.255(5)0.251(1)[5]

Amplitudes,
$$A = \int_{peak} d\omega \sigma(\omega)$$
, $\beta = 6.5$, $\xi = 4,24^3 \times 160$:MEM2-exp fit $A_{ps}(n = 1)$ 0.042(2)0.0432(5) $A_{ps}(n = 2)$ 0.107(13)0.117(7) $A_{sc}(n = 1)$ 0.028(4)0.021(1)[8]

Charmonia spectral functions at T>0

$$T = 1/(N_t a) \leftrightarrow \tau_{max} = 1/(2T)$$

PS, $24^3 \times N_t$, $a_t^{-1} = 14.12$ GeV, $\xi = 4$

Jakovác, P.P., Petrov, Velytsky, PRD 75 (2007) 014506

Charmonia spectral functions at T>0 (cont'd)

PS,
$$24^3 \times 40$$
, $a_t^{-1} = 14.12$ GeV, $\xi = 4, T = 1.2T_c$

there is a strong dependence on the default model $m(\omega)$ at finite temperature

Conclusions

- MEM offers an alternative possibility to analyze meson correlation functions, and we have seen that the meson spectral function extracted from lattice QCD have the expected form (resonances + continuum)
- Results obtained from MEM are compatible with multi-exponential fit, however, for charmonium correlators there is no real advantage of using MEM over the conventional method.
- Extracting width of resonances may be difficult through MEM
- Reliable calculation of meson properties at finite temperature using MEM is difficult with the lattice data available at present

What is the physics behind the 2nd and higher peaks ??

 m_2 does not approach the expected value as $a_s
ightarrow 0$

Pseudo-scalar: $A_2/A_1 \simeq |R'_{2P}(0)|^2/|R'_{1P}(0)|^2$

Using default model from the high energy part of the T=0 spectral functions : resonances appears as small structures on top of the continuum, almost no T-dependence in the PS spectral functions till $T \simeq 2.4T_c$

