Dynamical Fermion Algorithms using Multi-Step Stochastic Correction

Enno E. Scholz

Fourth International Workshop on Numerical Analysis and Lattice QCD

Yale University, New Haven, Ct May 1, 2007 "realistic" QCD-simulations: 2 light quarks plus single strange quark

- efficient in light regime tunable to simulated quark mass
- capable of odd flavor number \rightarrow approximation needed

Outline

- stochastic correction/reweighting in multi-boson algorithms
- polynomial approximation
- HMC, PHMC, RHMC
- applications of PHMC:
 - * twisted mass with $N_f = 2 + 1 + 1$
 - * " $N_f = 1 \text{ QCD}$ "

Multi-Boson Algorithms

- algorithm based on LÜSCHER's Multi-Boson representation
 - * det $(Q^{\dagger}Q)^{\alpha} = \int \mathcal{D}[\phi^{\dagger}, \phi] \exp\left(-\sum_{xy} \phi_{y}^{\dagger} \left[Q^{\dagger}Q\right]_{yx}^{-\alpha} \phi_{x}\right)$
 - \ast use polynomial approximation of

of order n_1 in intervall $[\epsilon,\lambda]$, such that EVs of $Q^\dagger Q$ are covered

$$\det(Q^{\dagger}Q)^{\alpha} = \int \mathcal{D}[\phi^{\dagger}, \phi] \exp\left(-\sum_{xy} \sum_{i=1}^{n_1} \phi_y^{(i)^{\dagger}} \left[(\gamma_5 Q - \rho_i^*)(\gamma_5 Q - \rho_i) \right] \phi_x^{(i)} \right)$$

 $P_1(x) \simeq x^{-\alpha}$

* ρ_i : "roots" of the polynom: $P_1(x^2) = c_0 \prod_{i=1}^{n_1} (x^2 - z_i) = r_0 \prod_{i=1}^{n_1} (x - \rho_i^*)(x - \rho_i)$ * apply standard local/global heatbath, over-relaxation algorithms

- able to deal with odd number of flavors ($N_f=1 \rightarrow lpha = 1/_2, \ldots$, possible caveat: sign-problem)
- smaller quark masses \Rightarrow lower EVs \Rightarrow larger polynomial orders n_1 required
- large order n_1 forbids direct application (memory, long autocorrelation, . . .)
- use (multiple) stochastic correction steps

Stochastic correction step (Noisy correction)

lower n_1 (less accurate) and perform stochastic correction using P_2 of sufficient higher order n_2

 $P_1(x)P_2(x)\simeq x^{-lpha}$

Two-Step Multi-Boson (TSMB) algorithm [MONTVAY, 1995]

- first step (local updates) $[U] \rightarrow [U']$ produce configuration according to $\det(P_1(Q^2))$
- stochastic correction step
 - * generate Gaussian random vector η with distribution

$$\frac{e^{-\eta^{\dagger}P_{2}(\boldsymbol{Q}[\boldsymbol{U}]^{2})\eta}}{\int d[\eta]e^{-\eta^{\dagger}P_{2}(\boldsymbol{Q}[\boldsymbol{U}]^{2})\eta}}$$

use $\eta = P_2(Q[U]^2)^{-\frac{1}{2}}\eta' = \overline{P}_2(Q[U]^2)\eta'$ from simple Gaussian distributed η' * accept change $[U] \rightarrow [U']$ with probability

$$\min\left\{1, \exp\left[\eta^{\dagger}\left(-P_{2}(\boldsymbol{Q}[\boldsymbol{U}']^{2})+P_{2}(\boldsymbol{Q}[\boldsymbol{U}]^{2})\right)\eta\right]\right\}$$

• final distribution according to $\det(P_1(Q^2) P_2(Q^2))$

Reweighting

- check quality of approximation
- few low eigenvalues (close or below ϵ)
- sign problem (R = -1)

Reweighting factor:

$$R = \prod_i P_1(\lambda_i) P_2(\lambda_i) \lambda_i^{lpha}, \quad \lambda_i$$
: Eigenvalue of Q^2 (exact)

or
$$R = \frac{1}{\det \left(P_3(Q^2) \right)} \quad \text{(stochastic estimate)}$$

or combine both

$$\langle A \rangle \; = \; rac{\langle R[U] A[U]
angle}{\langle R[U]
angle}$$

Applications of TSMB

- $N_f = 2$ Wilson-fermions, lowest $m_q \simeq \frac{1}{4}m_s$, $a \simeq 0.20$ fm, $L^3 \times T = 16^3 \times 32$ [Farchioni,..., EES,...]
- $N_f = 2$ twisted mass Wilson-fermions, exploratory studies [FARCHIONI,..., EES,...]

HMC-algorithm (mass-preconditioning, multiple step-size) turned out to be more efficient

• SUSY Yang-Mills studies, e.g. PEETZ, FARCHIONI, 2005

Multi-Step correction in MB-algorithms

MONTVAY, EES Phys.Lett. B 623 (2005) 73

generalize TSMB to Multi-Step Multi-Boson (MSMB) algorithm:

$$P_1(x)P_2(x)\cdots P_k(x)\simeq x^{-lpha},$$

increasing order $n_i > n_{i-1}$, $x \in [\epsilon_k, \lambda]$, $\epsilon_i \leq \epsilon_{i-1}$

$$P_i \simeq \left[x^{\alpha} P_1(x) \cdots P_{i-1}(x) \right]^{-1}, \ i \in 2, 3, \dots, k$$

- P_1 : local updates
- P_2, \ldots, P_k nested noisy corrections (Again: use $\bar{P}_i(x) \simeq P_i(x)^{-\frac{1}{2}}, x \in [\bar{\epsilon}_i, \lambda], \bar{\epsilon}_i \leq \epsilon_i$.)

• if accept-reject with P_i negative: reset to last accepted with P_i

Polynomial approximation

- L_2 -norm optimized turned out to be more favorable than L_{∞} [MONTVAY, 1999]
- polynoms P_2, \cdots, P_k in recursive scheme, calculating coefficients
 - * arbitrary precision arithmetics
 - * discretization of approximation interval
 - * allows for adaptive precision in P_k
- example from $L^3 \times T = 16^3 \times 32$, $\beta = 0.74$ (DBW2), $a \simeq 0.13$ fm, $N_f = 2$, $am_q \simeq 0.024$:

 $n_B = 2, \ \epsilon = 2 \cdot 10^{-5}, \ \lambda = 4.0, \ n_1 = 60, \ n_2 = 200, \ \bar{n}_2 = 300, \ n_3 = 800, \ \bar{n}_3 = 900$

[Gebert and Montvay, 2003] [Katz and Tóth, 2004]

Cost-formula

the cost in Matrix-Vector Multiplications (MVM) per cycle

Wilson-fermions: 1MVM $\simeq 1344\Omega$ flop

$$N_{\text{MVM}}/\text{cycle} = 6(n_B n_1 N_{\phi} + N_U) + F_G I_G + \sum_{i=2}^k 2n_B (n_k + \bar{n}_k) N_{Ck}$$

 N_{ϕ} number of local fermion updates, N_U number of local gauge updates, F_G , I_G frequency of global fermion updates and avg. number of MVM N_{Ck} number of correction steps involving P_k

in
$$L^3 imes T=16^3 imes 32$$
, $eta=0.74$ (DBW2), $a\simeq 0.13$ fm, $N_f=2$, $am_q\simeq 0.024$

2-step: $n_B = 4$, $n_1 = 34$, $n_2 = 720$, $\bar{n}_2 = 740$, $N_{C2} = 1$, 3-step: $n_B = 2$, $n_1 = 60$, $n_2 = 200$, $\bar{n}_2 = 300$, $N_{C2} = 10$, $n_3 = 800$, $\bar{n}_3 = 900$, $N_{C3} = 1$

compare 10 cycles of 2-step with 1 of 3-step (\approx same number of local updates)

 $10 \times 11,680 = 116,800$ vs. $10 \times 2,000 + 6,800 = 26,800$

(plaquette-autocorr. (in cycles): $\tau_{int} \simeq 50$ vs. $\tau_{int} \simeq 10$) total gain ≈ 1.5 (but well-tuned 2-step, not too much tuning effort in 3-step)

BROOKHAVEN NATIONAL LABORATORY

adaptive precision

• recursive formula for "correction"-polynomials (based on expansion in orthogonal polynomials) [GEBERT, MONTVAY, 2003]

$$P_k^{(n_k)}(x) = \sum_{\nu=0}^{n_k} d_\nu \Phi_\nu(x)$$

$$\Phi_0(x) = 1, \quad \Phi_1(x) = x - \frac{s_1}{s_0},$$

$$\Phi_{\mu+1}(x) = (x + \beta_\mu) \Phi_\mu(x) + \gamma_{\mu-1} \Phi_{\mu-1}(x), \quad \mu = 1, 2, \dots$$

- coefficients independent of polynomial order n_k
- last correction-step: stop at n_i if $\Delta_i < \epsilon_{ ext{precision}}$

$$\Delta_i = \left| \sum_{\nu=0}^{i-1} d_{\nu} \Phi_{\nu}(x) - \sum_{\nu=0}^{i} d_{\nu} \Phi_{\nu}(x) \right|$$

- allows using a very conservative correction polynomial without "wasting" too much time
- only applicable in last step (otherwise following approximations ill-defined!)

Further improvements

- Even-Odd preconditioning of the fermion matrix
- Determinant breakup

[HASENBUSCH, 1999]

n-root-trick of CLARK, KENNEDY

- * instead of using 1 polynom with exponent α , use n_B polynoms with exponents α/n_B
- * better stochastic sampling in noisy correction step

Mass preconditioning

- * similar to HASENBUSCH-trick in HMC-like algorithms [HASENBUSCH, 2001]
- * add a "mass-shift" $\mu_i > 0$ to each polynomial except the *final* one ($\mu_k = 0$)

$$P_{1}(x) \simeq (x + \mu_{1})^{-\alpha}$$

$$P_{i}(x) \simeq \left[(x + \mu_{i})^{\alpha} P_{1}(x) \cdots P_{i-1}(x) \right]^{-1}, \quad i \in 2, \dots, k-1$$

$$P_{k}(x) \simeq \left[x^{\alpha} P_{1}(x) \cdots P_{k-1}(x) \right]^{-1}$$

* allows for lower n_i ,

* acceptance remains sufficiently high, if μ_i/μ_{i-1} not much smaller than 1

Hybrid Monte-Carlo algorithms and variants

• HMC and stochastic correction

$$\mathcal{H} = \frac{1}{2} P^2 + S_g[U] + (\phi^{\dagger} \tilde{Q}^2 \phi)$$

update-step with $\delta \tau$: using preferred integration scheme

$$P \rightarrow P' = P - \delta \tau DS[U]$$
$$U \rightarrow U' = \exp(i\delta \tau \sum_{j} \lambda_{j} P_{j}) U$$

* replace \tilde{Q}^2 in HMC-update with mass-preconditioned HMC-update $\tilde{Q}^2 + \mu_1 \ (\mu_1 > 0)$ * use (multiple) stochastic correction to obtain correct ($\mu_k = 0$) determinant

• HMC only suitable for N_f even $(ilde{Q}^2, \, ilde{Q}^4, \, \dots \,)$

- Polynomial- or Rational-HMC for odd N_f
 - * again use polynomial representation in first step

[Frezzotti, Jansen, 1997-1999]

$$S_f = \phi^{\dagger} c_0 \prod_{i=1}^{n_1} (\tilde{Q} - \rho_i) \prod_{i=n_1}^{1} (\tilde{Q} - \rho_i^*) \phi$$

- direct application requires high n₁: costly and rounding errors
- again: use stochastic correction to control cost (next slides)

OR

* use rational approximation

[Clark, Kennedy, 2004, 2006]

$$S_f = \phi^{\dagger} \left(\alpha_0 + \sum_{k=1}^p \frac{\alpha_k}{\tilde{Q}^2 + \beta_k} \right) \phi$$

* rational approx. requires lower orders

BUT

- total numerical cost not directly given by order, matrix-inversion!!
- * cost can be controlled by some tuning effort ("light poles", "heavy poles" if L_{∞} is applied)
- sum is more convenient than product, when calculating derivative

PHMC with stochastic correction — some technical details

- use (low order) polynomial P_1 in PHMC-step (root-representation)
- calculate derivative recursively

$$\begin{split} \phi_1^{(k)} &= \sqrt{c_0} \phi(\tilde{Q} - \rho_1) \cdots (\tilde{Q} - \rho_k), \ k = 1, \dots, n-1 \\ \phi_2^{(k)} &= \sqrt{c_0} \phi(\tilde{Q} - \rho_1) \cdots (\tilde{Q} - \rho_n) (\tilde{Q} - \rho_n^*) \cdots (\tilde{Q} - \rho_{k+2}^*) \\ \phi \ D \ P_1(\tilde{Q}^2) \ \phi^{\dagger} &= 2 \operatorname{Re} \left(\sum_{k=0}^{n-1} \phi_1^{(k)} (D\tilde{Q}) \phi_2^{(k)\dagger} \right) \end{split}$$

- $\bar{P}_1 \simeq P_1^{-\frac{1}{2}}$ to generate boson-fields from Gaussian distribution
- $P_2, \bar{P}_2, \cdots, P_k, \bar{P}_k$ in correction-steps
- Sexton-Weingarten integration scheme with multiple time-steps
- determinant break-up, preconditioning

Application I: twisted mass with split-doublet

 $\rm CHIARAPPA,\ldots,~ EES,~\ldots,~ Eur.$ Phys. J. C 50 (2007) 373; hep-lat/0606011

- exploratory studies of $N_f = 2$ TM-fermions revealed interesting phase-structure of Wilson-fermions
- automatic $\mathcal{O}(a)$ -improvement
- first results large study of $N_f = 2$ using HMC presented by ETMC

[BOUCAUD et al., hep-lat/0701012]

- state-of-the-art of "realistic" QCD: include strange quark
 - * use untwisted strange quark \rightarrow no $\mathcal{O}(a)$ -improvement
 - * use 2nd doublet unsplit \rightarrow only quenched QCD possible
 - use mass-splitting in 2nd doublet

[Frezzotti, Rossi, 2004]

$$Q_{x,y}^{\mathsf{TM}} = \delta_{x,y} \Big[\mu_{\kappa} + i\gamma_5 \tau_1 a \mu_{\sigma} + \tau_3 a \mu_{\delta} \Big] - \frac{1}{2} \sum_{\mu=\pm 1}^4 \delta_{x,y+\hat{\mu}} (\gamma_{\mu} + r) U_{y\mu}$$

- * lower bound on EV, automatic $\mathcal{O}(a)$ improvement
- * including strange-quark without sign-problem ($N_f = 2 + (1 + 1)$; (u,d)+(c,s))
- * $\mu_{\delta} \neq 0$: use PHMC (HMC not applicable)

Dynamical Simulations

• tree-level Symanzik gauge action, two lattice spacings (fixed physical volume: $aL \simeq 2.4$ fm)

*
$$a \simeq 0.20$$
 fm ($\beta = 3.25, L^3 \times T = 12^3 \times 24$)
 $a\mu_l = 0.01, a\mu_\sigma = 0.315, a\mu_\delta = 0.285, \kappa \in [0.1740, 0.1755]$ (7 values, 10 runs)

*
$$a \simeq 0.15$$
fm ($\beta = 3.35, L^3 \times T = 16^3 \times 32$)
 $a\mu_l = 0.0075, a\mu_\sigma = 0.2363, a\mu_\delta = 0.2138, \kappa \in [0.1690, 0.1710]$ (9 values)

- varied $\kappa(=\kappa_l=\kappa_h)$ to find $\kappa_{\rm crit}$, explore phase-structure
- lattice-spacing, light-doublet similar to previous studies (DBW2 and pure Wilson gauge action)

approx 0.15fm, $L^3 imes T=16^3 imes 32$

- minimal $m_{\pi} \simeq 450 \mathrm{MeV}$
- minimal $m_K \simeq 850 {
 m MeV}$
- sharp rise in $\langle \Box \rangle$
 - ? weak first order phase transition

or

- ? cross-over
- * not distinguishable in finite volume

- not an algorithmic imperfection
 - * transition low \rightarrow high plaquette phase positive \rightarrow negative quark mass phase
 - * "crossing near origin"
 - * lowest EV fluctuating in high plaquette phase

cost of the PHMC-algorithm

- 1 stochastic correction step
- Sexton-Weingarten-int. with multiple time-steps, $\delta \tau = 0.4$, $N_T = 2$, $N_G = 5$, $N_Q = 2$, $n_B = 2$ (Omelyan-integrator with $\lambda_{\text{Omelyan}} = 1/6$)

$$N_{\text{MVM}} \approx \sum_{\text{doublets}} \left\{ 2n_B(n_2 + \bar{n}_2) + N_T \Big[2n_B(n_1 + \bar{n}_1) + n_B(3 + 2N_Q)(4n_1 - 1) \Big] \right\}$$

 $* \ au \simeq \mathcal{O}(1)$ (depends on observable)

- * larger step-size may improve cost/autocorrelation (alpha-Collaboration, MEYER et al., 2006)
- * may use mixed HMC (unsplit) and PHMC (split-doublet) ("best of both worlds")

Application II: " $N_f = 1 \text{ QCD}$ "

- polynomial approximation allows to study $N_f = 1$
- no spontaneous chiral symmetry breaking: U(1)-anomaly
- applicability of partially quenched chiral perturbation theory: SU(3|2) (one sea, two valence quarks)?
- $N_f = 1$ results helpful to resolve fourth root (staggered) issue
- study relation to $\mathcal{N} = 1$ SYM (orientifold planar equivalence)

in collaboration with (publication in preparation):

ECT*

Trento

- tree-level Symanzik gauge action with Wilson fermions
- $L^3 \times T = 12^3 \times 24 \ (\beta = 3.8, \ a \simeq 0.19 \text{fm}) \text{ and } 16^3 \times 32 \ (\beta = 4.0, \ a \simeq 0.13 \text{fm})$
- PHMC with one correction step + reweighting/negative sign
- $\delta \tau$: 1.5 1.8 (3–6 trajectories)
- polynomials at lightest masses ($m_{\pi} \approx 240 \text{MeV}, 400 \text{MeV}$):

$L^{3} \times T$	$[\epsilon,\lambda]$	n_1	$ar{n}_1$	n_2	$ar{n}_2$
$12^3 \times 24$	$[3.25 \cdot 10^{-6}, 2.6]$	350	550	1400	1600
$16^3 \times 32$	$[1.20\cdot 10^{-5}, 2.4]$	250	370	1000	1150

BROOKHAVEN NATIONAL LABORATORY

E. E. Scholz — Dynamical Fermion Algorithms using Multi-Step Stochastic Correction (QCDNA '07) 19

Summary

- multiple stochastic correction allows for good cost control can be implemented with any basic updating algorithm, we used
 - * Multi-Boson (\rightarrow TSMB, MSMB)
 - * Polynomial-HMC (direct cost control compared to Rational-HMC)
- polynomial formulation allows to be flexible in flavor-number
- mass-preconditioning (Hasenbusch-trick) easy to implement
- recent applications of PHMC with stochastic correction:
 - * exploratory study of $N_f = 2 + 1 + 1$ twisted mass: feasible approach * " $N_f = 1$ QCD" vs. SUSY Yang-Mills . . . (work in progress)

