State-of-the-art numerical solution of large Hermitian eigenvalue problems

Andreas Stathopoulos

Computer Science Department and Computational Sciences Cluster

College of William and Mary

Acknowledgment: National Science Foundation

The problem

Find numEvals eigenvalues $\tilde{\lambda}_i$ and corresponding eigenvectors \tilde{x}_i

 $A ilde{x}_i = ilde{\lambda}_i ilde{x}_i, \;\; i=1: ext{numEvals}$

A is large, sparse, symmetric

$$N = O(10^6 - 10^8)$$

Applications: materials, structural, data mining, SVD, QCD, ...

QCD

Accelerate linear systems with multiple right hand sides

Low rank approximation of matrices

Only possible through iterative methods

Given initial guess v_0 , the iteration

for
$$i = 1, 2, \dots$$

 $t = Av_{i-1}$
 $v_i = t/||t||$

converges to the largest modulus eigenpair $(\tilde{\lambda}_N, \tilde{x}_N)$, i.e.,

$$\frac{A^{i}v_{0}}{\|A^{i}v_{0}\|} \longrightarrow \tilde{x}_{N}, \text{ with rate } \frac{\tilde{\lambda}_{N-1}}{\tilde{\lambda}_{N}}$$

- + Requires only matrix-vector multiplications
- Only for largest eigenpair
- Slow!

Krylov methods: the prevailing technique

Krylov space consists of the span of all power iterates:

$$\mathcal{K}_{m,v} = span \{v, Av, A^2v, \dots, A^{m-1}v\}$$

= $\{p(A)v : \forall p \text{ polynomial of degree} < m\}$

Compute *V* an orthonormal basis for $\mathcal{K}_{m,v}$ (for numerical stability)

Compute approximations through Rayleigh-Ritz:

$$x_i = V y_i$$
, where $V^T A V y_i = \lambda_i y_i$

Arnoldi: the above process for non-symmetric matrices

Lanczos: a special case of Arnoldi for symmetric matrices

$$\mathcal{K}_{m,v} = span \{v, Av, A^2v, \dots, A^{m-1}v\}$$

= $\{p(A)v : \forall p \text{ polynomial of degree} < m\}$

- + Approximating extreme eigenpairs
- + Converges trivially in N steps
- + Optimal approximations over all polynomials
- Convergence rate depends on relative separation of eigenvalues
- Slow for clustered eigenvalues and large sizes
- $-O(Nm^2)$ orthogonalization cost, O(mN) storage

$$Ax = b$$

Conjugate Gradient (CG) uses a 3-term recurrence to build $\mathcal{K}_{m,v}$ and update the approximate solution.

- O(Nm) cost and O(3N) storage
- minimizes $||error||_A$ at every step
- Preconditioning with $M^{-1} \approx A^{-1}$ also easy: $M^{-1}Ax = M^{-1}b$ (PCG)

$$Ax = b$$

Conjugate Gradient (CG) uses a 3-term recurrence to build $\mathcal{K}_{m,v}$ and update the approximate solution.

- O(Nm) cost and O(3N) storage
- minimizes $||error||_A$ at every step
- Preconditioning with $M^{-1} \approx A^{-1}$ also easy: $M^{-1}Ax = M^{-1}b$ (PCG)

Note: The action of M^{-1} could be an iterative method itself!

Lanczos problems

- Lanczos 3-term recurrence still requires O(Nm) storage
- Unlike CG, orthogonality is important in Lanczos

\Downarrow

- Restarting to limit the basis size destroys optimality
- Preconditioning is not obvious ($M^{-1}Ax = \lambda M^{-1}x$ not an eigenproblem)

Goal: Use PCG to derive nearly optimal eigenmethods with smaller bases

Let $r = Ax - \lambda x$ the residual of an approximate eigenpair (λ, x)

Arnoldi/Lanczos: expand basis V by r.

Generalized Davidson: expands by the preconditioned *r*:

append preconditioned residual Rayleigh Ritz normalize new residual

No 3-term recurrence, more expensive step, but much faster convergence

Given initial guess v_0 , the iteration

for
$$i = 1, 2, ...$$

 $t = (A - \sigma I)^{-1} v_{i-1}$
 $v_i = t / ||t||$

converges to the eigenpair closest to σ

- + The closer σ is to $\tilde{\lambda}_k$ the faster the outer convergence rate $\frac{\tilde{\lambda}_k \sigma}{\tilde{\lambda}_{k-1} \sigma}$
- A direct factorization of A may be prohibitive
- An iterative method for the linear system may take long to converge

Rayleigh Quotient Iteration

Given initial guess v_0 :

for
$$i = 1, 2, \dots$$

 $t = (A - \sigma I)^{-1} v_{i-1}$
 $v_i = t/||t||$
 $\sigma = v_{i-1}^T A v_{i-1}$

All the characteristics of Inverse Iteration but also:

- + converges to the eigenpair **cubically**!!
- if v_0 not close to the required eigenvector it may misconverge

[11]

Given initial guess v_0 :

for
$$i = 1, 2, \dots$$

 $t = (A - \sigma I)^{-1} v_{i-1}$
 $v_i = t/||t||$
 $\sigma = v_{i-1}^T A v_{i-1}$

All the characteristics of Inverse Iteration but also:

+ converges to the eigenpair **cubically**!!

- if v_0 not close to the required eigenvector it may misconverge

Eigenproblem: constrained minimization of Rayleigh quotient $\lambda = \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$

RQI equivalent to Newton on the unit-sphere manifold

 $(A - \sigma I)t = v_{i-1}$ must be solved accurately enough for RQI to converge

However, inexact (truncated) Newton does not require high accuracy

Newton:
$$x_{i+1} = x_i - Hess(x_i)^{-1}\nabla(x_i)$$
 computes correction
RQI: $x_{i+1} = (A - \sigma I)^{-1}x_i$ updates approximation
 \Downarrow

inexact RQI not exactly inexact Newton!

 $(A - \sigma I)t = v_{i-1}$ must be solved quite accurately for RQI to converge

However, inexact (truncated) Newton does not require high accuracy

Newton:
$$x_{i+1} = x_i - Hess(x_i)^{-1}\nabla(x_i)$$
 computes correction
RQI: $x_{i+1} = (A - \sigma I)^{-1}x_i$ updates approximation
 \Downarrow

inexact RQI not exactly inexact Newton!

Note $\nabla(x) = -r = -(Ax - \lambda x)$ the residual of (λ, x) . Thus the correction δ to *x*:

Jacobi-Davidson: $(I - xx^T)(A - \eta I)(I - xx^T)\delta = r$ computes correction

 $JD \Leftrightarrow inexact (truncated) Newton$

Let $M \approx A - \sigma I$ a preconditioner

Both GD/JD solve approximately the correction equation:

Generalized Davidson as $\delta = M^{-1}r$

Jacobi Davidson as $\delta = M^{-1}|_{x^{\perp}} r$

Both GD/JD not single vector iterations, they build a space!

GD, JD \iff subspace-accelerated inexact Newton

Mild non-linearity:

- Nonlinear CG is competitive
- Better: locally optimal LOBPCG

[Bradbury & Fletcher, '66, Others] [D'yakonov '83, Knyazev, '91, '01]

$$x_{i+1} = \operatorname{Rayleigh}_{\operatorname{Ritz}} (x_{i-1}, x_i, M^{-1}r_i)$$

Mild non-linearity:

- Nonlinear CG is competitive
- Better: locally optimal LOBPCG

[Bradbury & Fletcher, '66, Others] [D'yakonov '83, Knyazev, '91, '01]

$$x_{i+1} = \operatorname{Rayleigh}_{\operatorname{Ritz}}(x_{i-1}, x_i, M^{-1}r_i)$$

- Subspace acceleration and recurrence restarting in GD [Murray et al., '92]
- GD(k,m)+1: Restart with $[x_{i-1}, x_i^1, \dots, x_i^k]$ [AS '98, '99]

Direct analogy to limited memory quasi Newton methods:

GD+1 accelerates LOBCPG ↔ Broyden accelerates Nonlinear CG

Optimal: Unrestarted Lanczos or QMRopt, QMR solving $(A - \tilde{\lambda}I)x = 0$

Based on symmetric QMR [Freund & Nachtigal 94] with right preconditioning

JDQMR new features

- 1. Can use indefinite preconditioners
- 2. Works for interior eigenpairs
- 3. Residual convergence smooth
- 4. Better stopping criteria

JDQMR improves robustness and efficiency

JDQMR reduces wasted iterations

One eigenvalue with preconditioning

NASASRB: Note the plateaus

ARPACK for 1M: 525 Matvecs, 220 seconds

What is optimal for many eigenvalues?

- Red: QMRopt (exact eigenvalues as shifts)
- Black: JDQMR nearly optimal
- Blue: subspace accelerated GD+1 better than optimal ?

JD: projecting the locked vectors $X \neq$ projecting the Ritz vector x

• Orthogonalization requirements dominate for $nev \gg$, so

Solve: $(A - \eta I)$ t = -r, w/o preconditioning $(I - XX^T)(A - \eta I)K^{-1}$ t = -r, with preconditioning

Other choices JDQMR-(Left,Skew,Right) (111), (000), (101), (011), (100)

Laplace 7point, 125K, Tol = 1e-15

JDQMR-000 fastest among all PRIMME variants and ARPACK

cfd1, 70K, 26 nonzeros/row Tol = 1e-15

ARPACK eventually better for large numEvals and denser matrices

Ratio: ARPACK / JDQMR-000 for 8 matrices

JDQMR-000 faster for numEvals < 10. Asymptotically depends on sparsity

cfd1 70K, Tol = 1e-15

Q-projectors have no effect convergence of JDQMR

Laplace 7point, 125K, Tol = 1e-15

Expensive preconditioner \Rightarrow fewer MVs means faster (GD+1)

PRIMME: PReconditioned Iterative MultiMethod Eigensolver

with my Ph.D. student J.R. McCombs

- Full set of defaults for non expert users
- Full customizability for expert users
- Near optimality through GD+k and JDQMR
- Over 12 methods accessible through PRIMME.
- Parallel, high performance implementation
- C and Fortran interfaces, Matlab interface soon.

Download: www.cs.wm.edu/~andreas


```
#include "primme.h"
```

```
primme_params primme;
primme_Initialize(&primme);
```

```
primme.n = n;
primme.numEvals = 20;
```

```
primme.matrixMatvec = MV(x,y,k)
primme.applyPreconditioner = PR(x,y,k)
```

```
primme_set_method(method, &primme);
```

```
ierr = dprimme(evals, evecs, rnorms, &primme);
```



```
#include "primme.h"
```

```
primme_params primme;
primme_Initialize(&primme);
```

```
primme.n = n;
primme.numEvals = 20;
```

The matrix and its size have been read. Number of needed eigenvalues, smallest by default

```
primme.matrixMatvec = MV(x,y,k)
primme.applyPreconditioner = PR(x,y,k)
```

```
primme_set_method(method, &primme);
```



```
#include "primme.h"
```

```
primme_params primme;
primme_Initialize(&primme);
```

```
primme.n = n;
primme.numEvals = 20;
```

```
primme.matrixMatvec = MV(x,y,k)
primme.applyPreconditioner = PR(x,y,k)
```

Pointers to functions for block matrix-vectors, and block precondition-vectors

```
primme_set_method(method, &primme);
```


	CHOICES:	
<pre>#include "primme.h"</pre>	DYNAMIC	
	DEFAULT_MIN_TIME	
primme_params primme;	DEFAULT_MIN_MATVECS	
primme Initialize(&primme):	Arnoldi	
P = ==== 0 = 0 = 0 = 0 (0 P = ==== 0) ,	GD	
<pre>primme.n = n; primme.numEvals = 20;</pre>	GD_plusK	
	GD_Olsen_plusK	
	JD_Olsen_plusK	
	RQI	
primme.matrixMatvec = $MV(x,y,k)$	JDQR	
<pre>primme.applyPreconditioner = PR(x,y,k)</pre>	JDQMR	
	JDQMR_ETol	
	SUBSPACE_ITERATION	
<pre>primme_set_method(method, &primme);</pre>	LOBPCG_OrthoBasis	
	LOBPCG_OrthoBasis_Window	

The full interface – Advanced user

#include "primme.h"
primme_params primme;

primme.

outputFile	= stdout	iseed	= -1
printLevel	= 5	restarting.scheme	<pre>= primme_thick</pre>
numEvals	= 10	restarting.maxPrevRetain	= 1
aNorm	= 1.0	correction.precondition	= 1
eps	= 1.0e-12	correction.robustShifts	= 1
maxBasisSize	= 15	correction.maxInnerIteration	ıs = −1
minRestartSize	= 7	correction.relTolBase	= 1.5
maxBlockSize	= 1	<pre>correction.convTest = adap</pre>	tive_ETolerance
maxOuterIterations	= 10000	correction.projectors.LeftQ	= 1
maxMatvecs	= 300000	correction.projectors.LeftX	= 1
target	<pre>= primme_smallest</pre>	correction.projectors.RightG) = 0
numTargetShifts	= 0	correction.projectors.SkewQ	= 0
targetShifts	= 1.0 2.0	correction.projectors.RightX	. = 1
locking	= 1	correction.projectors.SkewX	= 1
initSize	= 0	matrixMatvec	= $MV(x,y,k)$
${\tt numOrthoConst}$	= 0;	applyPreconditioner	= $PR(x, y, k)$

Minimal Fortran interface

```
include 'primme_f77.h'
integer primme
call primme_initialize_f77(primme)
call primme_set_member_f77(primme, PRIMMEF77_n, n)
call primme_set_member_f77(primme, PRIMMEF77_numEvals, 20)
call primme_set_member_f77(primme, PRIMMEF77_matrixMatvec, MV)
call primme_set_member_f77(primme, PRIMMEF77_applyPreconditioner,PR)
call primme_set_method_f77(primme, method, bytesNeeded)
call dprimme_f77(evals, evecs, rnorms, primme, ierr)
```

Similar to C

```
#include "primme.h"
primme_params primme;
primme_Initialize(&primme);
primme.n = n;
primme.numEvals = 20;
primme.matrixMatvec = MV;
primme.applyPreconditioner = PR;
primme_set_method(method, &primme);
ierr = dprimme(evals, evecs, rnorms, &primme);
```


Can we use these Krylov spaces to

1. obtain eigenpairs?

2. use these eigenpairs to deflate and thus accelerate subsequent systems?

For restarted GMRES(*m*), the variant GMRESDR(*m*) \Leftrightarrow IRA(*m*)

GMRESDR computes eigenvalues while solving the system

GMRES expensive per iteration

Restarting slows convergence for linear system AND eigenvectors

Can we be more effective on CG/Lanczos?

Small window of *m* vectors, *V*, keeps track of the smallest *nev* < *m* eigenvectors

V is expanded by the CG residuals

When *m* vectors in *V*, restart it as in GD(nev, m) + nev

CG iterates unaffected

Records the Lanczos vector contributions to eigenvectors

Incrementally improving accuracy and number of eigenvalues

Use the CG iterations for \tilde{k} subsequent RHS to improve U:

Incremental eigCG

$$U = [], \Lambda = []$$

for $i = 1 : \tilde{k}$
 $x_0 = U\Lambda^{-1}U^H b_i$
 $[x_i, V, M] = eigCG(nev, m, A, x_0, b_i)$
 $[U, \Lambda] = RayleighRitz([U, V]);$
end

// accumulated eigenpairs

// the init-CG part // eigCG with initial guess x_0

Typical values:

$$k = 100, \ \tilde{k} = 12 - 24, \ nev = 10, \ m = 40$$

Convergence improves after every new CG

Lattice parameters:

- 2 flavor Wilson fermions
- Lattice spacing $a_s = 0.1 fm$ (spatial)
- anisotropic: $a_t = a_s/3$
- pion mass (350-400 MeV)

Two lattice sizes:

- $16^3 \times 64$ for a matrix dimension of 3.1 million
- $24^3 \times 64$ for a matrix dimension of 10.6 million

Currently running using Chroma at Jefferson Lab

Case: 3.1 million

Case: 10.6 million

Conclusions

- JDQMR \Leftrightarrow subspace accelerated inexact (truncated) Newton
- GD+1 \leftrightarrow subspace accelerated quasi Newton
- Near optimal for just a few eigenpairs
- Cheaper projectors possible with JDQMR for many eigenvalues

PRIMME a state of the art eigensolver

Our recent research promising for optimal, limited memory eigensolver

